Как уже было сказано, энергия фотонов света намного больше энергии квантов радиоволн; в свою очередь энергия квантов рентгеновских лучей в десять или даже в сто тысяч раз больше энергии квантов световых. Чем меньше детали объектов, которые мы собираемся рассматривать, тем энергичнее должны быть используемые фотоны. Этот факт имеет странные последствия. в то время как свет от Солнца, даже интенсивный, практически не воздействует на движение планет и позволяет нам спокойно вести наблюдения, излучение рентгеновских микроскопов очень сильно влияет на движение исследуемых электронов, бомбардируя их фотонами высоких энергий. Действительно, электроны представляют собой частицы с очень маленькой массой, и их движение испытывает сильное возмущение при соударении с фотонами, используемыми для наблюдения; ведь чтобы точно определить положение электрона, необходимо использовать коротковолновые и высокочастотные рентгеновские лучи, т.е. фотоны очень высоких энергий. в результате проведенного наблюдения скорость электрона окажется чрезвычайно неопределенной величины, поскольку невозможно заранее предвидеть, сколько энергии он получит от фотона-наблюдателя.
Подобные рассуждения привели к появлению соотношения неопределенности Гейзенберга: согласно Гейзенбергу, невозможно одновременно определить и положение, и скорость электрона (да и любой другой частицы). Более того, бессмысленно даже представлять электрон как объект, которому можно приписать положение и скорость, определенные совершенно точно в одно и то же время; ограничения, которых мы коснулись, связаны вовсе не с плохой конструкцией микроскопа, но следуют из новых свойств, внутренне присущих материи. Эти свойства явились предметом длительных дебатов, не затихающих до сих пор.
Волновая формулировка квантовой механики
Трудности, возникающие при попытках объяснить квантовую механику непосвященным, довольно значительны; вероятно, лучше всего можно разъяснить суть вещей, исходя из ее волновой формулировки.
Движение электрона при этом уже не описывают, задавая последовательные положения в зависимости от времени, – электрон представляется в виде «мини-волны»; при таком подходе соотношение неопределенности автоматически входит составной частью в теорию.
Вообразим серию волн, набегающих на пологий берег; скорость этих волн вполне определенная, и ее можно вычислить, зная расстояние и время, разделяющие два последовательных гребня. Волна, однако, не особенно локализована, она занимает большое пространство. Электрон, скорость которого нам хорошо известна, в отличие от положения, которое мы знаем очень плохо, можно представить в виде волны такого типа.
В противоположность рассмотренному примеру можно представить себе бак с водой, подвешенный над поверхностью моря в точно определенном месте; бак открывается, и вода в последующие мгновения низвергается, создавая серию волн, которые разбегаются во все стороны с самыми различными скоростями. Электрон, локализованный в пространстве, характеризуется волновой функцией как раз такого типа.
Образ частицы в виде материального шарика, перемещающегося вдоль вполне определенной орбиты, является всего лишь зрительным приближением к более глубокой и скрытой истине, выражаемой квантовой механикой. Существует мнение, что открытие этой механики привело к революции в физике, сравнимой с переворотом в умах, вызванным принципом относительности. Квантовый образ атома прекрасно иллюстрирует это. в конце концов, можно считать электрон и шариком, лишь бы не пришло в голову попытаться слишком точно локализовать его или пока ему по дороге не встретились слишком мелкие препятствия; в этих случаях заметной становится волновая природа электрона.
В модели Бора наиболее глубокие атомные орбиты страдают как раз от этих ограничений, они слишком близко подходят к ядру. Поэтому при их описании надо учитывать, что электрон является волной. Атом в значительной мере похож на странную резонансную полость, в которой вместо звуковых волн находятся электронные.
Еще во времена Пифагора было известно, что струна, барабан, труба органа и тому подобные предметы могут издавать звук, т.е. колебаться, только с определенными частотами, зависящими от формы предмета. Чем длиннее струна или труба органа, тем медленнее их колебания и ниже звук. Точно таким же образом колебания атома могут происходить только с частотами из вполне определенного набора, причем каждая мода соответствует определенной орбите в старой модели Бора-Брика Брадфорда. в обычной планетарной системе не существует запретов, которые заставляли бы планеты занимать только какие-то заданные орбиты.