Боб немного помедлил, но ответил правильно и в свою очередь задал Элен задачу.
В копилке, наполненной пятидолларовыми золотыми монетами, золота столько же, сколько в копилке с десятидолларовыми золотыми монетами, поэтому обе копилки содержат золота на одну и ту же сумму.
Задача о шотландце, раскладывающем по 10 карманам 44 бумажных доллара, гораздо труднее. Выясним, что произойдет, если мы разложим по карманам минимальное число купюр. Даже если мы оставим первый карман пустым (положив в него чисто символически 0 долларов), а в каждый из следующих карманов положим на 1 доллар больше, чем в предыдущий, то всего нам понадобится 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 долларов, что больше тех 44 долларов, которые были у шотландца. А стоит лишь нам изъять хотя бы один доллар из какого-нибудь кармана, как в двух карманах долларовых купюр окажется поровну.
Основную идею такого рода рассуждений математики называют принципом Дирихле. Мы называли его также принципом «птичка в клетке». Суть его кратко можно сформулировать так: трех птичек невозможно рассадить по двум клеткам так, чтобы в каждой клетке оказалось по птичке. А вот еще один пример занимательной задачи, в решении которой используется принцип Дирихле. Предположим, что в городе не более 200 000 жителей. Можно ли утверждать, что по крайней мере у двух из них число волос на голове одинаково?
Такое утверждение может показаться невероятным, но принцип Дирихле убеждает нас в том, что ответ на этот вопрос должен быть утвердительным. Судите сами. Число волос на голове у человека не превышает 100 000. Если среди жителей города нет двух людей с одинаковым числом волос на голове, то один из них может быть совершенно лысым, у другого может расти на голове 1 волос, у третьего 2 волоса и т. д. Но как только мы дойдем до 100 001-го человека, как число волос у него на голове непременно окажется таким же, как у кого-то из жителей города. А так как население города составляет около 200 000 человек, то среди его жителей найдется около 100 000 таких, у которых число волос на голове будет совпадать с числом волос на голове у кого-то другого!
Часы дядюшки Генри
Едва Элен успела решить предложенную Бобом задачку, как они дошли до хижины дядюшки Генри. Хижину дядюшка построил своими руками, и в ней не было ни электричества, ни телефона, ни радио, ни телевизора.
Дядюшка Генри сразу обратился к ним с вопросом.
Дядюшка Генри отправился в соседний городок и полтора часа провел там в бакалейном магазине.
Вернувшись домой, дядюшка Генри сразу же перевел стрелки часов.
Предположим, что дядюшка Генри завел часы перед тем, как выйти из дома, и часы в бакалейном магазине показывают точное время.
Каким образом дядюшка Генри ухитряется узнавать точное время по возвращении домой?
Задача решается просто, если догадаться, что перед выходом из дома дядюшка Генри мог завести свои остановившиеся часы и по ним определить, сколько времени его не было дома. Поставить правильно стрелки часов дядюшка Генри, разумеется, не мог, так как не знал точное время, но ничто не мешало ему запомнить, сколько было на часах, когда он уходил из дома.
Вернувшись, дядюшка Генри взглянул на часы и узнал, сколько времени ушло у него на дорогу туда и обратно и на визит в бакалейный магазин. По часам, висевшим в магазине, дядюшка Генри узнал, сколько времени он там пробыл, и вычел это время из общей продолжительности своего похода в город. Тем самым дядюшка Генри узнал, сколько времени заняла у него дорога туда и обратно. Поскольку дядюшка Генри ходит с постоянной скоростью, то на дорогу от городка до дома времени ушло вдвое меньше. Прибавив время, которое ушло на обратную дорогу, к точному времени своего выхода из магазина, которое он установил по висевшим там часам, дядюшка Генри узнал точное время своего возвращения домой и смог перевести стрелки своих часов так, что те стали показывать точное время.