Читаем Если бы числа могли говорить. Гаусс. Теория чисел полностью

Так, мнимое число z имело бы вид а + bi, как точка с координатами (a, b) на плоскости, что показано на рисунке. Ось R используется для действительной части, а ось I — для мнимой. Кроме того, Гаусс снабдил комплексные числа арифметикой, которая позволила бы проводить с ними все виды операций.

Несмотря на то что речь шла об очень эффективном представлении, Гаусс держал в секрете эту карту мира мнимых чисел. Как только доказательство было обнаружено, ученый убрал графические «леса», так что от них не осталось и следа. При этом он осознавал, что математики часто смотрят на графики с некоторым подозрением, отдавая предпочтение языку формул и уравнений, поскольку в то время существовало мнение, что графики могут быть ошибочными. Гаусс знал, что графическое представление мнимых чисел вызовет недоверие, поэтому исключил его из доказательства, которое сразу же стало довольно непонятным для современников. Непонятным настолько, что в некоторых книгах по истории науки говорится, что первое доказательство теоремы, предложенное математиком, было ошибочным, хотя вернее было бы сказать — неполным. И пробел находится в том варианте доказательства, которое было опубликовано, а не в том, которое Гаусс вывел для себя.

ПОЛЕ КОМПЛЕКСНЫХ ЧИСЕЛ

Комплексные числа имеют алгебраическую структуру поля с операциями суммы и произведения. Сначала дадим им определения и покажем, что это внутренние операции, то есть что мы получаем комплексные числа, когда оперируем ими.

— Сумма:

(a + bi) + {c + di) = a + c + (b + d) i.

— Произведение:

(a + bi) · (c + di) = ac + adi + bci + bdi² = ac-bd + (be + + ad) i.

При таком определении операций у чисел есть необходимые свойства для того, чтобы иметь алгебраическую структуру поля:

— ассоциативность обеих операций;

— коммутативность обеих операций;

— существование нейтрального элемента (0 для суммы и 1 для произведения);

— существование результата, противоположного сумме, и результата, обратного произведению;

— дистрибутивность.

Доказательство этих свойств следует непосредственно из определений. Наличие структуры поля позволяет работать с комплексными числами, используя все возможности, которые предоставляет алгебра.

ЛЕОНАРД ЭЙЛЕР
Перейти на страницу:

Похожие книги