Читаем Если бы числа могли говорить. Гаусс. Теория чисел полностью

Эйлер (1707-1783) — швейцарский математик и физик. Речь идет о главном математике XVIII века и одном из самых великих математиков всех времен. Эйлер долгие годы жил в России, где был почетным гостем Екатерины I и ее придворных (в то время в России существовала традиция приглашать наиболее крупных ученых в Академию наук). Эйлер осуществил важные открытия в таких областях, как вычисления, или теория графов (графы — это математическая модель множества узлов и их соединений с помощью ребер, ориентированных либо нет; они имеют широкое применение для представления сети дорог или планов городов). Эйлер также ввел значительную часть современной терминологии и математических обозначений, например понятие математической функции. Он определил число е, одну из самых используемых констант, породившую натуральные логарифмы. Также Эйлер известен своими работами в области механики, оптики и астрономии. Он входит в число наиболее плодовитых ученых: полное собрание его сочинений могло бы занять от 60 до 80 томов. И действительно, даже через 50 лет после смерти математика Петербургская академия наук все еще публиковала статьи Эйлера, хранящиеся в ее архивах. Лаплас, говоря о влиянии ученого на последующих математиков, заметил: «Читайте Эйлера, читайте Эйлера, он учитель всех нас».

В ту эпоху превалировала мысль о том, что числа -- это объекты, которые можно складывать и умножать, но не изображать. И потребовалось 50 лет для того, чтобы Гаусс решился открыть коллегам графические леса, которыми он воспользовался в диссертации. Эта теорема так захватила Гаусса, что он нашел еще три ее доказательства. Второе возникло через год после защиты, и оно дополняло некоторые пропуски первоначального варианта. Третье доказательство, выдвинутое в 1815 году, было основано на идеях Эйлера, в нем не применяются геометрические положения, и это первая серьезная попытка чисто алгебраического доказательства с открытым использованием комплексных чисел. Тут же Гаусс критикует попытки других математиков, основанные на аналитических методах. Последнее доказательство было получено в 1849 году, в связи с 50-летием докторской диссертации. Оно очень похоже на первое, но в этот раз Гаусс приводит все геометрические рассуждения. Чтобы понять важность диссертации Гаусса, достаточно отметить, что доказательство теоремы повергло в прах Эйлера, Лагранжа и Лапласа — трех величайших математиков в истории.

На основе работ Гаусса можно было подступиться к поиску корней многочлена любой степени. Для уравнений до пятой степени (n = 5) были найдены формулы нахождения корней с помощью коэффициентов самого многочлена, что называется решением в радикалах. Формулы были того же типа, что мы использовали для решения уравнений второй степени, однако для уравнений пятой степени их никак не могли найти. Решение нашлось у очень молодого французского математика Эвариста Галуа (1811-1832), который погиб в результате дуэли, едва ему исполнился 21 год. Галуа доказал, что невозможно решить уравнения пятой степени с помощью коэффициентов самого многочлена, и нашел альтернативные методы нахождения корней, пользуясь результатами Гаусса.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное