/* The message the device will give when asked */
static char Message[BUF_LEN];
/* How far did the process reading the message get?
* Useful if the message is larger than the size of the
* buffer we get to fill in device_read. */
static char *Message_Ptr;
/* This function is called whenever a process attempts to open the device file */
static int device_open(struct inode *inode, struct file *file) {
#ifdef DEBUG
printk("device_open(%p)\n", file);
#endif
/* We don't want to talk to two processes at the same time */
if (Device_Open) return -EBUSY;
/* If this was a process, we would have had to be
* more careful here, because one process might have
* checked Device_Open right before the other one
* tried to increment it. However, we're in the
* kernel, so we're protected against context switches.
*
* This is NOT the right attitude to take, because we
* might be running on an SMP box, but we'll deal with
* SMP in a later chapter. */
Device_Open++;
/* Initialize the message */
Message_Ptr = Message;
MOD_INC_USE_COUNT;
return SUCCESS;
}
/* This function is called when a process closes the
* device file. It doesn't have a return value because
* it cannot fail. Regardless of what else happens, you
* should always be able to close a device (in 2.0, a 2.2
* device file could be impossible to close). */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static int device_release(struct inode *inode, struct file *file)
#else
static void device_release(struct inode *inode, struct file *file)
#endif
{
#ifdef DEBUG
printk("device_release(%p,%p)\n", inode, file);
#endif
/* We're now ready for our next caller */
Device_Open--;
MOD_DEC_USE_COUNT;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
return 0;
#endif
}
/* This function is called whenever a process which
* has already opened the device file attempts to read from it. */
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
static ssize_t device_read(
struct file *file,
char *buffer, /* The buffer to fill with the data */
size_t length, /* The length of the buffer */
loff_t *offset) /* offset to the file */
#else
static int device_read(
struct inode *inode, struct file *file,
char *buffer, /* The buffer to fill with the data */
int length) /* The length of the buffer (mustn't write beyond that!) */
#endif
{
/* Number of bytes actually written to the buffer */
int bytes_read = 0;
#ifdef DEBUG
printk("device_read(%p,%p,%d)\n", file, buffer, length);
#endif
/* If we're at the end of the message, return 0 (which signifies end of file) */
if (*Message_Ptr == 0) return 0;