Читаем Энергия и жизнь полностью

Из-за низкой плотности и рассеянности потока квантов солнечного излучения даже в сбалансированных ценозах используется на фотосинтез около 1% падающего потока, а в целом по биосфере — ниже 0,5%. Это кажется очень малым, но мы теперь уже знаем, как непросто живым экосистемам в условиях нехватки вещества производить его всевозможные циклы. Мы уже описывали одно из удивительнейших чудес природы — растение, которое способно на огромную высоту навстречу солнечному лучу поднимать растворы необходимых солей, чтобы добыть энергию себе и последующим звеньям, поставляющим эти соли растению в круговороте.

Зато с каждым последующим звеном коэффициент использования энергии повышается, травоядные животные используют 10—15% от их кормовой базы, а хищники — до 30%. Поскольку консументы берут около 10% энергии растений, то, как отмечает С. С. Шварц [1980], часто делается вывод о том, что не энергетические ресурсы лимитируют развитие. Однако более тонкие наблюдения говорят, что такие выводы надо использовать с осторожностью. Оказывается, энергетический баланс животных очень напряжен. Поддержание энергетического баланса может рассматриваться как основа адаптаций.

Однако нельзя отводить растениям слишком пассивную роль. Живая природа более изобретательна, чем мы склонны считать. Одним из ярких примеров этому может служить увеличение захвата энергии растениями в эволюции. Если первичный бактериальный фотосинтез был связан с энергетически низкой длинноволновой частью спектра солнечного излучения, то современные зеленые растения используют наибольший возможный поток солнечной энергии. Считающийся более древним бактериохлорофилл имеет максимум поглощения между 800 и 900 нм, где поток солнечной энергии существенно меньше.

Говоря о действии ЭПЭР в биосфере, обратимся к выводам теоретиков. В обстоятельном труде «Самоорганизация в неравновесных системах» Г. Николис и И. Пригожин [М., 1979] затрагивают аспекты эволюции экосистем. Рассматривая вопросы устойчивости системы против структурной флуктуации с новой функцией (что-то типа активного мутанта в популяции), авторы приходят к выводу, что «в качестве движущей силы эволюции следует рассматривать энергетическую диссипацию» и что «процессы эволюции приводят к усилению эксплуатации окружающей среды» (с. 456). Обсуждавшийся нами энергетический принцип достаточно полно и точно соответствует этим выводам.

<p>6.4. Энергетический принцип интенсивного развития (ЭПИР)</p>

Говоря об ЭПЭР, мы подчеркивали возрастание способности живой системы захватывать энергию, способности к экспансии, распространению в новые места. При этом качественных изменений энергетики организмов можно и не требовать, им достаточно за счет автокатализа как можно быстрее «наплодить» себе подобных.

Однако при длительном развитии и особенно эволюции живых систем все более существенную роль должны играть процессы, направленные на улучшение качества использования энергии. И это очевидно, так как живая система в результате автокатализа быстро попадает в условия жесточайшей нехватки вещества (об организации и развитии циклов мы неоднократно упоминали на страницах этой книги). А при быстром размножении и лимитировании по веществу потребуется и быстрое отмирание, что сопровождается потерями энергии и информации и ставит популяцию в невыгодные условия. В этом случае гораздо выгоднее структуры с более длинным циклом развития. И не зря у многоклеточных организмов доля размножающихся клеток падает от 100% на ранних стадиях до 1% и ниже во взрослом состоянии.

Увеличение длительности существования считается одним из наиболее характерных проявлений эволюционного прогресса. «Подъем энергии жизнедеятельности» и, в частности, «повышение дыхательной функции», по А. Н. Северцову, является одним из главных эволюционных изменений. При этом очень важно, чтобы траты энергии на образование самой структуры и ее содержание без выполнения других функций, типа основного обмена у животных, минимизировались (или по крайней мере возрастали медленнее общих трат).

Исходя из принципа оптимальной структуры [Розен, 1969], требуется минимизация «метаболической цены», которая измеряется энергией, расходуемой организмом на образование и поддержание структуры.

Введем показатель уровня энергетического развития, характеризующий интенсивность использования энергии на единицу возобновляемой биологической структуры:

.

Для простых случаев (без учета возрастных структур и т. д.) между скоростью обновления биомассы µ и длительностью поколения g существует связь в виде

.

Здесь R — число одновременно появляющихся потомков; R = 2 при делении клеток, почковании, при последовательном появлении по одному потомку и сохранении активности родителя, т. е. в этом случае время удвоения биомассы равно длительности поколения. Для подобных случаев можно записать

.

Перейти на страницу:

Все книги серии От молекулы до организма

Темперамент. Характер. Личность
Темперамент. Характер. Личность

Книга члена-корреспондента АН СССР, доктора медицинских наук П. В. Симонова и кандидата искусствоведения П. М. Ершова посвящена популярному изложению естественнонаучных основ индивидуальных особенностей человека в свете учения И. П. Павлова о высшей нервной деятельности и достижений современной психофизиологии. ряде глав использовано творческое наследие К. С. Станиславского, касающееся воссоздания характеров действующих лиц и принципов актерского перевоплощения в индивидуальность изображаемого персонажа.Книга представляет интерес для самого широкого круга читателей — физиологов, психологов, педагогов, работников искусства, для каждого, кто в своей практической деятельности связан с вопросами воспитания, подбора, профессиональной ориентации людей.

Павел Васильевич Симонов , П. В. Симонов , Петр Михайлович Ершов , П. М. Ершов

Психология и психотерапия / Психология / Образование и наука

Похожие книги

Психология стресса
Психология стресса

Одна из самых авторитетных и знаменитых во всем мире книг по психологии и физиологии стресса. Ее автор — специалист с мировым именем, выдающийся биолог и психолог Роберт Сапольски убежден, что человеческая способность готовиться к будущему и беспокоиться о нем — это и благословение, и проклятие. Благословение — в превентивном и подготовительном поведении, а проклятие — в том, что наша склонность беспокоиться о будущем вызывает постоянный стресс.Оказывается, эволюционно люди предрасположены реагировать и избегать угрозы, как это делают зебры. Мы должны расслабляться большую часть дня и бегать как сумасшедшие только при приближении опасности.У зебры время от времени возникает острая стрессовая реакция (физические угрозы). У нас, напротив, хроническая стрессовая реакция (психологические угрозы) редко доходит до таких величин, как у зебры, зато никуда не исчезает.Зебры погибают быстро, попадая в лапы хищников. Люди умирают медленнее: от ишемической болезни сердца, рака и других болезней, возникающих из-за хронических стрессовых реакций. Но когда стресс предсказуем, а вы можете контролировать свою реакцию на него, на развитие болезней он влияет уже не так сильно.Эти и многие другие вопросы, касающиеся стресса и управления им, затронуты в замечательной книге профессора Сапольски, которая адресована специалистам психологического, педагогического, биологического и медицинского профилей, а также преподавателям и студентам соответствующих вузовских факультетов.

Борис Рувимович Мандель , Роберт Сапольски

Биология, биофизика, биохимия / Психология и психотерапия / Учебники и пособия ВУЗов