Читаем Энергия и жизнь полностью

Сам Ч. Дарвин находился под глубоким впечатлением от высокой скорости размножения живых организмов в геометрической прогрессии. «...Все органические вещества естественно возрастают в такой прогрессии, что, если бы они не погибали, земля вскоре была бы покрыта потомством одной единственной пары... Даже медленно размножающийся человек удваивает численность в 25 лет, и по этой пропорции менее чем в тысячу лет буквально не осталось бы для его потомства места, где можно было бы поставить ногу» [Там же, с. 56].

Наиболее впечатляющие цифры можно привести из кинетики роста микроорганизмов. Если взять среднюю массу бактерии равной 6 · 10—13 г и сравнить ее с массой Земли, равной 6 · 1027 г, то получим величину, в 1040 раз меньшую. Однако прирост биомассы бактерий в такое число раз при размножении простым делением можно получить примерно за 130 последовательных поколений (1040 = 2130). Если длительность поколения принять за 20 мин (это — средние данные для кишечной палочки на богатой среде), то получим необходимое время — несколько менее 2 сут. Таким образом, при хороших условиях размножения потомки одной бактериальной клетки способны в течение всего лишь 2 сут создать биомассу по величине, равную массе всей планеты, а по объему превышающую ее в пять раз с лишним. Поистине огромен потенциал живой приводы к размножению!

Мы уже говорили, что биохимическую основу, обеспечивающую высокие скорости роста и развития клеток, организмов, популяций, составляют хорошо сбалансированные системы реакций воспроизводства (автокатализа) макромолекул, прежде всего нуклеиновых кислот и ферментов. Например, эффективность иона железа как катализатора реакции разложения перекиси водорода возрастает на 9—10 порядков (т. е. в миллиарды раз), если он в составе молекулы порфирина входит в фермент — каталазу. Примерно такие же, т. е. в сотни миллионов и миллиарды раз большие по сравнению со скоростями реакций в неживой природе, скорости процессов, протекающих на ферментативной основе в живых системах.

В живых организмах «... скорость химической реакции почти всегда достигает предельного значения, которое определяется законами физики. Во всех случаях обнаруживают оптимальное соотношение тенденции „как можно быстрее“ и „настолько точно, как это нужно“»,— пишут в книге «Игра жизни» известный исследователь физико-химических основ эволюции лауреат Нобелевской премии Манфред Эйген и его соавтор Роберт Винклер [М. 1979, с. 96].

Однако возможности неограниченного размножения не могут реализоваться: и для популяционного уровня, и выше «взрывы» численностей имеют место гораздо реже, чем поддержание стационарных уровней, и бывают кратковременными. Живая природа упирается в ограничение косного окружения. «Напор жизни» (по выражению В. И. Вернадского), нехватка вещества загоняют ее в условия сильного лимитирования. (Не зря существует выражение: «Голод правит миром».)

Живая система использует все, что может взять у среды. Главная черта, характеризующая «хитрость» живой природы, ее «умение» справляться с лимитированием по веществу при постоянной накачке потоком солнечной энергии,— это повсеместное развитие циклов вещества. Рассмотрим некоторые примеры циклов вещества в живой природе — от молекулярных структур клетки до биосферы в целом — на разных уровнях ее организации.

<p>5.3. Живые циклы: от электронного до биосферного</p>

«„Wheels within wheels within wheels“ — циклы, включающие циклы, которые, в свою очередь, включают циклы,— так определяется биологический процесс в целом»,— пишут в книге «Наука о живом» известные биологи П. и Дж. Медавары [М., 1983]. Мы начнем описание этих циклов с самого основного — энергодающего.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Биосфера и Ноосфера
Биосфера и Ноосфера

__________________Составители Н. А. Костяшкин, Е. М. ГончароваСерийное оформление А. М. ДраговойВернадский В.И.Биосфера и ноосфера / Предисловие Р. К. Баландина. — М.: Айрис-пресс, 2004. — 576 с. — (Библиотека истории и культуры).В книгу включены наиболее значимые и актуальные произведения выдающегося отечественного естествоиспытателя и мыслителя В. И. Вернадского, посвященные вопросам строения биосферы и ее постепенной трансформации в сферу разума — ноосферу.Трактат "Научная мысль как планетное явление" посвящен истории развития естествознания с древнейших времен до середины XX в. В заключительный раздел книги включены редко публикуемые публицистические статьи ученого.Книга представит интерес для студентов, преподавателей естественнонаучных дисциплин и всех интересующихся вопросами биологии, экологии, философии и истории науки.© Составление, примечания, указатель, оформление, Айрис-пресс, 2004__________________

Владимир Иванович Вернадский

Геология и география / Экология / Биофизика / Биохимия / Учебная и научная литература