Если бы не было мореплавания, то дикие обитатели какого-нибудь очень маленького острова на океане едва ли додумались бы до расстояний, превышающих наш зрительный кругозор. Но и между ними мог найтись человек, способный завести мысль за эти пределы. Выходя из ежедневного опыта, что реальности (видимые вещи) очень часто закрываются от наших глаз посторонними предметами, и считая небесный свод родом занавеса, опускающегося в море, он мог бы вообразить существование реальностей и за этой занавеской. Для его ума эта воображаемая реальность была бы
Столь же ясно сказывается опыт и в теоретических построениях опытных наук и психологии. Все это — случаи толкования явлений за отсутствием в наличности одного или нескольких реальных факторов. Ум, как говорится, прозревает необходимость их в явлении и создает таковые, но не зря, а в согласии с объясняемыми фактами. В этом смысле гипотезы всегда носят характер логических построений или выводов из известных посылок. Так, ум создан по шаблону причинной зависимости, как деятельное начало, объясняющее известный цикл явлений, служащих посылками; такое же значение имеют колебательные движения эфира в отношении световых явлений и пр.
В третью и четвертую категории относятся математические построения ума. На примерах из этой классической области внечувственного мышления я вынужден сделать очень длинную остановку, дабы выяснить общие условия приложимости математических знаний к реальностям и условиям полного разрыва их с действительностью.
Объекты математического мышления суть: число, протяженность и общая рамка для них — количество и количественные отношения.
Легко показать, что корни всех этих понятий лежат в чувствовании. Когда простолюдин выражает
Наконец, в словах
Однако понятиям большое и малое, сильное и слабое и пр. соответствуют лишь неопределенные количественные разницы; полную определенность они получили лишь с тех пор, как были изобретены числа и меры. О вероятных чувственных источниках последних и пойдет теперь речь, в виде длинной вставки между знаками
Про наиболее первобытных дикарей рассказывают, что они не в силах додуматься сами до чисел свыше 4. Понять это до известной степени нетрудно, если принять во внимание, что числа хотя и имеют чувственные корни, но как система представляют продукт чисто символического мышления и возможны только при определенном распорядке обозначений. Одними глазами нельзя например сосчитать и 10 песчинок, расположенных в беспорядке, если не следовать в передвижении глаз какой-нибудь заранее принятой системе и не отмечать в уме периодические фиксации словами: раз, два, три и т. д. Легче, но едва ли возможно сосчитать и при посредстве периодических отодвиганий песчинок пальцем, если не сопровождать передвижений тем же знаками. Отчего это? Да просто потому, что считания в форме отдельных передвижений глаз или пальца, представляя однообразно повторяющиеся периоды более или менее длинного ряда, не могут зарегистровываться в памяти раздельно, а должны в силу сходства сливаться друг с другом. Дело другого рода, если каждое последующее передвижение отмечено для сознания новым знаком, например звуковым, тогда память сразу выводится из всякого затруднения, потому что каждый вновь появляющийся знак суммирует сосчитанное.