Это наряду с усовершенствованием конструкции отклоняющих электродов позволило повысить чувствительность электронного луча к отклонению до 5 мм/в и даже больше. В этих условиях, используя транзисторы при нормальном для них напряжении питания, можно очень легко заставить луч перемещаться по всему экрану трубки.
Н. — Как досадно, что этих трубок не было раньше! Они оказались бы очень практичными для усилителей на лампах с подогревными катодами. Но один вопрос меня серьезно беспокоит: скажи, пожалуйста, какую полосу пропускания способны обеспечить эти осциллографы на транзисторах?
Л. — Я знаю современные осциллографы, обладающие полосой пропускания около 20 Мгц. что не так плохо. Но следует признать, что, даже мобилизуя все достижения техники, очень трудно сделать полосу пропускания шире 50 или 80 Мгц. Но для наблюдения еще более быстрых явлений при условии, что они периодические, может служить интересный прибор — стробоскопический осциллограф.
Н. — Что это за инструмент? Я о нем ничего не слышал.
Л. — Это просто осциллограф, в котором использован стробоскопический эффект. Ты с ним знаком? Если вращающийся диск освещать короткими вспышками света, давая вспышки через равные промежутки времени по одной на каждый оборот, то вследствие инерции зрительного восприятия диск покажется нам неподвижным. Если несколько уменьшить частоту вспышек, то при каждой новой вспышке изображение диска немного смещается относительно предыдущего положения и у нас складывается впечатление, что диск вращается очень медленно.
Н. — Очень хитрая система. Я видел ее, но совершенно не понимал, как она работает. Но как ты применишь этот принцип к осциллографу?
Л. — На рис. 113 я подготовил для тебя структурную схему такого осциллографа.
Рис 113.
Предположим, что наблюдаемому периодическому сигналу всегда предшествует сигнал синхронизации. В случае надобности сигнал синхронизации можно получить из самого наблюдаемого сигнала с помощью схемы наподобие триггера Шмитта, а наблюдаемый сигнал задержать с помощью линии задержки. Каждый поступающий импульс синхронизации запускает один очень резко нарастающий пилообразный сигнал. Одновременно импульс синхронизации подается в систему, именуемую сумматором, которая порциями заряжает конденсатор, давая ему порцию энергии при поступлении каждого импульса синхронизации. Пилообразный сигнал с резким нарастанием и сигнал, вырабатываемый сумматором, подаются на схему, называемую компаратором (устройством сравнения). В момент, когда напряжения, подавляемые на два входа этой схемы, оказываются равными, компаратор дает на выходе импульс. Этот импульс используется для управления своеобразным электронным прерывателем, который подключает сигнал к накопительному конденсатору
Н. — Все это безумно сложно!
Л. — А я и не говорил, что это просто. Но я считаю, что ты должен знать это устройство, революционизирующее радиоэлектронику высоких частот (где время измеряется наносекундами, т. е. миллиардными долями секунды).
Как ты видишь, при поступлении первого сигнала выходное напряжение сумматора почти равно нулю. А это означает, что компаратор даст свой импульс в самом начале подъема крутого пилообразного сигнала, и электронный прерыватель подаст сигнал на конденсатор
В следующий период выходное напряжение сумматора повысится на одну ступеньку, и компаратор немного позже даст свой импульс. Следовательно, на этот раз сигнал позже замкнется на запоминающий конденсатор