Н. — Это должно породить невообразимую неразбериху. Электроны то ускоряются, то замедляются и в конечном итоге они все должны перепутаться!
Л. — Ты не так далек от истины. Если оставить достаточное расстояние, чтобы быстро летящие электроны смогли догнать двигающиеся медленно, то электроны сгруппируются в пакеты. При расчете клистрона стараются создать такие условия, чтобы наилучшая группировка электронов приходилась на момент их подхода к сеткам второго объемного резонатора. Проходя через второй резонатор, пакеты электронов отдают ему свою энергию и порождают в нем колебания значительно более мощные, чем те, которые использовались для возбуждения первого резонатора.
Н. — Так, значит, клистрон представляет собой усилительную лампу?
Л. — Да, есть клистроны-усилители. Такие лампы позволяют получить наибольшие мощности в импульсе на сверхвысоких частотах. В настоящее время на частоте 3 Ггц удается получить 30 000 квт в импульсе. Но клистрон можно использовать и как генератор. Если выходной резонатор синфазно (без сдвига фазы) соединить с входным, то устройство начинает генерировать.
Н. — Но в этой лампе довольно трудно изменить частоту, так как для этого пришлось бы одновременно изменять настройку обоих резонаторов.
Л. — Чтобы избавиться от этого недостатка, создали так называемый
Н. — И для этого полученные с клистрона колебания подают на сетку лампы, а на ее другую сетку подают колебания, принятые антенной?
Л. — На таких высоких частотах не рекомендуется пользоваться этим методом. Обычно колебания клистрона-гетеродина направляют в объемный резонатор (кусок волновода), куда вводят также и волновод, идущий от приемной антенны. В том месте, где эти две волны сходятся, помещают крохотный кристаллический детектор, представляющий собой нелинейный элемент, необходимый для выделения биений этих двух волн. В цепи кристалла получают колебания промежуточной частоты (равной разности частот колебаний гетеродина и принимаемого сигнала). Полученные колебания промежуточной частоты усиливают высокочастотным транзисторным или ламповым усилителем.
Н. — Ты только что говорил о приемной антенне. А почему радиолокаторы имеют всего лишь одну антенну?
Л. — Правильно, антенна одна; сначала она используется для передачи, а затем для приема. Такое использование антенны приводит к весьма сложным проблемам: мощность излучаемых колебаний может превысить тысячу киловатт, тогда как приемник способен обнаружить миллионную долю микроватта. Для защиты приемника от разрушения излучаемым колебанием создали очень остроумную систему из газоразрядных ламп, заполненных газом под низким давлением, которые размещены в волноводах на пути прохождения волны или в стенке волновода. Во время передачи, когда по волноводам проходит очень большая мощность, газ в лампе ионизируется. В этих условиях он уподобляется очень хорошему проводнику — закрывает волновод, соединяющий антенну с приемником, и в последний практически ничего не попадает. При приеме отраженного сигнала его мощность настолько мала, что газ больше не ионизируется, волновод открыт и принимаемая волна свободно проходит в приемник. Другая газоразрядная лампа находится на стенке волновода между магнетроном и разветвлением волновода; она не пропускает к магнетрону принимаемую волну. Эта лампа размещена сбоку от пути следования волны, и поэтому в отличие от лампы, находящейся в ответвлении волновода к приемнику, не пропускает волну, если находящийся в ней газ не ионизирован.
Н. — Зачем понадобилось не пропускать принимаемую волну к магнетрону? Ведь она не может его разрушить.
Л. — Разумеется, нет. Но, если не сделать такого запора, часть принимаемой волны оказалась бы потерянной для приемника, а энергии поступает так мало, что напрасно транжирить ее просто глупо. Благодаря размещению газоразрядных ламп непосредственно в волноводе или на его стенке вся принимаемая энергия отраженного сигнала поступаёт в приемник.