Это приспособление наклеивают на деталь (обычно металлическую), которая подвергается воздействию силы, вызывающей деформацию, приводящую к внутренним напряжениям. Если деталь подвергается растяжению, то участок, где наклеен измерительный резистор, удлиняется; это же происходит с резистором, и его сопротивление изменяется.
Н. — Любознайкин, но это совсем не годится! Ты говоришь мне о металлической детали…
Л. — Необязательно, это только наиболее распространенный случай.
Н. — Если бы ты сказал мне о резине, я охотно допустил бы, что она деформируется под воздействием силы, но о металле этого сказать нельзя.
Л. — Посмотри на этот металлический стержень; он совершенно прямой, если его держать вертикально. А теперь я перевожу его в горизонтальное положение и один конец зажимаю в тисках; ты видишь, что стержень прогнулся. Теперь ты вынужден признать, что расположенные сверху волокна металла удлинились, а расположенные внизу — укоротились.
Н. — Тебе не следовало говорить мне этого! Теперь, проходя по мосту, я всегда буду думать, что детали его настила удлиняются под моим весом.
Л. — До тех пор, пока ты не заставишь их превысить предел эластичности, их удлинение остается строго пропорциональным вызывающей его силе, и опасаться совершенно нечего. Мост рассчитан на большие нагрузки. А кроме того, к счастью для нашего преобразователя, провод которого без риска обрыва может удлиниться не больше чем на долю процента, удлинение изучаемой детали очень мало.
Н. — Допускаю, но меня беспокоит другое: ты мне сказал, что изменение сопротивления не превышает 0,5 %, а такое ничтожное изменение несомненно нельзя заметить по стрелке омметра.
Л. — Разумеется, поэтому в этом случае пользуются не омметром. Измерения производят с помощью схемы, наводящей ужас на многих студентов последних курсов, ибо они не понимают простоты — моста Уитстона.
Н. — О, опять этот ужас! Я никогда не понимал этого отвратительного сооружения: четыре уравнения с четырьмя неизвестными…
Л. — Мы поступим иначе. Посмотри на схему, изображенную на рис. 13. Что это такое?
Рис. 13.
Н. — Здесь нет ничего таинственного: батарея и два делителя напряжения.
Л. — Хорошо, но можешь ли ты назвать величины напряжений
Н. — Хм… давай посмотрим. Кажется, я догадался, если воспользоваться схемой, представленной на рис. 5, то получим:
Л. — Незнайкин, 20 из 20![3] А теперь скажи мне, когда
Н. — Ну разумеется, когда
Л. — Хорошо, а теперь следи за мной. Деля обе части уравнения на
В этой пропорции произведение крайних членов равно произведению средних членов, следовательно,
X(R2 + Q) = Q(R1 + X) или XR1 + XQ = QR2 + XQ.
Из обеих частей уравнения я вычитаю величину
XR2= QR1
Н. — До сих пор я уследил за тобой…
Л. — Вот и хорошо, а теперь остановись, расчеты закончены. Только что полученное выражение представляет собой условие равновесия (баланса) моста Уитстона, показывающее что в нашей схеме (а она и есть мост Уитстона)
Н. — Согласен, мост Уитстона — это очень просто. Но что он даст нам для наших тензометрических преобразователей?
Л. — Представь себе, что
Н. — Изумительный метод! И до чего практичен этот резистор R1, чувствительный к механическому натяжению проволоки, из которой он сделан!
Л. — Это было бы слишком хорошо; резистор чувствителен к температуре по крайней мере в такой же степени, как и к воздействию силы. Но в этом случае мост Уитстона проявил себя еще лучше; в