Читаем Электроника?.. Нет ничего проще! полностью

Рис. 95.При резком запирании транзистора возникающая э. д. с. повышает потенциал коллектора до такой величины, что диод Д начинает проводить ток. Таким образом диод защищает транзистор.

Н. — Я предпочитаю схему с варистором, потому что она не требует вспомогательного источника напряжения 24 в. Но один момент меня серьезно беспокоит в твоем числовом примере. Ты говорил о реле, потребляющем ток 75 ма при напряжении 12 в, т. е. с мощностью в катушке 0,9 вт.

Л. — Но ведь это совершенно нормальная величина, Незнайкин, и, если ты помнишь, я тебе об этом недавно говорил.

Н. — Да, реле у меня не вызывает никакого сомнения, но я полагаю, что транзистор должен быть довольно мощным, потому что ему приходится рассеивать 1 вт.

Л. — Совсем нет, дорогой Незнайкин. Подумай сам, ведь при нормальных рабочих условиях транзистор находится в состоянии насыщения; коллекторный ток составляет 75 ма, но напряжение на его коллекторе почти равно нулю, так как 12 в почти полностью находятся на зажимах катушки реле. В этих условиях на коллекторе транзистора рассеивается чрезвычайно небольшая мощность.

Н. — Значит, я могу обойтись совсем маломощным транзистором при условии, если он выдерживает коллекторный ток 75 ма и 24 в в запертом состоянии?

Л. — Несомненно, если ты уверен, что транзистор используется либо в запертом состоянии, либо в состоянии насыщения. Но если транзистор также используется в состоянии между насыщением и запиранием, то на коллекторе будет рассеиваться определенная мощность. Несложно рассчитать, что здесь, как и для любого транзистора с напряжением питания , поступающим через резистор R, максимальная рассеиваемая на коллекторе мощность составляет E2/4R или равна четверти максимальной мощности, рассеиваемой на резисторе, когда транзистор находится в состоянии насыщения. Эта максимальная рассеиваемая на коллекторе транзистора мощность соответствует режиму, когда напряжение на выводах транзистора равно напряжению на выводах нагрузки (оба эти напряжения равны Е/2). В интересующем нас случае наибольшая мощность на коллекторе транзистора будет рассеиваться, когда напряжение на выводах нагрузки составит 6 в (и, следовательно, на выводах транзистора будет тоже 6 в). Как я уже сказал, она соответствует четверти максимальной мощности рассеяния в катушке реле или несколько превышает 0,22 вт. Такую мощность свободно выдерживают многие даже очень маломощные транзисторы.

Выбор транзистора

Н. — Итак, подведем итоги. Если я правильно тебя понял, имеются две возможности: 1) транзистор работает только в запертом состоянии и в состоянии насыщения, и тогда на коллекторе рассеивается незначительная мощность; 2) транзистор постепенно переходит от запертого состояния к состоянию насыщения, и тогда он должен обладать способностью рассеивать 0,22 вт. Но в таком состоянии, когда он рассеивает 0,22 вт, транзистор находится очень короткое время (напряжение на выводах катушки составляет всего лишь половину номинального, и вполне вероятно, что в этих условиях реле не сработает). Поэтому можно взять транзистор, рассчитанный на 150 мвт или даже на еще меньшую мощность.

Л. — Нет, Незнайкин, при работе с транзисторами нельзя рассуждать так же, как при работе с лампами. Даже на очень короткое время нельзя допускать превышения теоретических пределов рассеяния. Транзисторный переход обладает очень небольшой термической инерцией, иначе говоря, его температура поднимается очень быстро вслед за изменением рассеиваемой мощности. Лампы отличаются большим запасом прочности, например, лампа, предназначенная для рассеяния на ее аноде не более одного ватта, может в течение нескольких секунд выдержать 4 или даже 5 вт при условии, что она не очень часто будет подвергаться такому испытанию. Установленные для транзистора, пределы необходимо выдерживать значительно строже. Кроме того, анод лампы разогревается довольно долго, тогда как нагревание перехода в транзисторе продолжается всего лишь несколько миллисекунд. И, наконец, следует сказать, что нет абсолютно никаких доказательств, что в один прекрасный день система не окажется в таком состоянии, когда транзистор рассеивает 0,22 вт (т. е. в самом неблагоприятном режиме).

Н. — Так, значит, использовать транзистор меньшей мощности невозможно?

Л. — Вполне возможно, но для этого необходимо управлять транзистором, например, с помощью триггера Шмитта, чтобы транзистор всегда был заперт или насыщен и никогда не мог оказаться в промежуточном состоянии. Но тогда вновь придется столкнуться с неприятностями, уже упоминавшимися в связи со слишком быстрыми изменениями коллекторного тока. Возникает опасность появления значительных перенапряжений, от которых в качестве защиты придется использовать диод или варистор.

Перейти на страницу:

Похожие книги

100 способов избежать аварии. Спецкурс для водителей категории В
100 способов избежать аварии. Спецкурс для водителей категории В

Сколько раз, сидя перед экраном телевизора, вы вздрагивали, услышав визг тормозов? К сожалению, со стороны пассажирского сиденья он звучит еще страшнее. Все мы прекрасно знаем, что, садясь за руль, мы несем ответственность не только за себя и своих спутников, но и за всех участников дорожного движения.Так как же вести себя, если вы понимаете, что ситуация вышла из-под контроля и велика вероятность аварии?Александр Каминский, изучив часто случающиеся аварии, на страницах своей книги поделился опытом и секретами, как их избежать, а также подробно описал экстренные действия во время нештатных ситуаций.Книга написана живым и доступным языком и предназначена для широкого круга автовладельцев с различным стажем вождения. Желаем вам приятного чтения и надеемся, что чужой опыт, описанный в этой интересной книге, никогда не станет вашим!

Александр Юрьевич Каминский

Автомобили и ПДД / Техника