Читаем Электроника?.. Нет ничего проще! полностью

Л. — Хорошо, начнем с двуханодного магнетрона. Его аноды представляют собой половинки цилиндров, расположенные так, что образуют подобие трубки, внутри которой размещен подогревный катод. Вся эта конструкция находится в междуполюсном зазоре мощного магнита, силовые линии которого параллельны оси цилиндра. Схема включения двуханодного магнетрона изображена на рис. 155, аноды соединены с выводами колебательного контура.

Рис. 155.Первый тип магнетрона — двуханодный магнетрон, помещается в магнитное поле, параллельное оси его катода.

Положительный полюс источника высокого напряжения соединен со средней точкой контура, а отрицательный — с катодом магнетрона. Само собой разумеется, что все элементы магнетрона — его катод и аноды — помещены в колбу, из которой откачан воздух. Представь себе, что из-за небольшого рассогласования один из анодов в какой-то момент имеет потенциал чуть выше, чем другой.

Н. — Разве такое положение возможно? Ведь аноды соединены между собой колебательным контуром.

Л. — В контуре вполне возможно возникновение небольших колебаний, которые создадут на мгновение разность потенциалов между его выводами. Как поведут себя в этом случае выходящие с катода электроны?

Н. — О! Здесь нет никакой проблемы. Большинство электронов пойдет к тому из анодов, который имеет более высокий потенциал.

Л. — В этом-то напряжении электронов пойдет меньше, чем в другом. Не забывай о наличии магнитного поля — оно стремится закрутить траекторию движения электронов вокруг катода. Поэтому из-за отклонения траектории большое число электронов, двигавшихся в сторону более положительного анода, попадет на менее положительный анод.

Н. — Эти электроны ведут себя крайне нелепо!

Л. — Ничего подобного! Эти электроны стремятся усилить первоначальный разбаланс. Они повышают разность потенциалов между двумя анодами до тех пор, пока колебательный контур не начнет изменять эту разность в другую сторону. Следовательно, колебания будут поддерживаться действием электронов и магнитным полем.

Н. — Очень ловко! Но по сути дела твой магнетрон не что иное, как. диод с двумя анодами.

Многоанодный магнетрон

Л. — Совершенно верно. Но обычно магнетроны делают не с двумя, а с большим количеством анодов, например с восемью или десятью. Их можно расположить по схеме, приведенной на рис. 156.

Рис. 156.Многорезонаторный магнетрон с восемью анодами, соединенными колебательными контурами.

Колебания создаются точно так, как показано на рис. 155; разница заключается лишь в том, что в этом случае делают восемь одновременно работающих связанных колебательных контуров. В какой-то определенный момент четные аноды положительны относительно нечетных, а в следующий полупериод — наоборот.

Н. — Я понимаю принцип работы, но, на мой взгляд, сделать такую восьмианодную систему с восемью колебательными контурами дьявольски сложно!

Л. — Намного проще, чем ты думаешь, Незнайкин. Все эти колебательные контуры и аноды сделаны из одного куска меди, которому придана форма, показанная на рис. 157. Весь этот медный блок соединяется с положительным полюсом источника высокого напряжения. Как ты видишь, чтобы пройти от одного анода к другому, ток должен обогнуть полости, что дает нам эквивалент одновитковой катушки.

Рис. 157.Реальная конструкция восьмикамерного магнетрона; колебательными контурами являются объемные резонаторы, полученные фрезерованием анодного блока. В одном из объемных резонаторов находится петля — виток связи, предназначенный для вывода энергии.

Н. — С катушкой все ясно, но я совсем не вижу конденсатора.

Л. — Но в этом повинны твои глаза; между двумя поверхностями щели, соединяющей околокатодное пространство с одной из полостей, имеется некоторая емкость.

Н. — Ты прав. Принимая во внимание очень малую индуктивность и очень малую емкость, я полагаю, что система должна создавать колебания очень высокой частоты.

Л. — Такие магнетроны легко позволяют получить колебания с частотой выше 30 000 Мгц, иначе говоря, выше 30 миллиардов периодов в секунду. Такая частота соответствует длине волны меньше одного сантиметра. Но в современных радиолокаторах магнетроны чаще используют для получения колебаний с частотой 3 Ггц (т. е. 3000 Мгц), что соответствует длине волны 10 см или же 10 Ггц (длина волны 3 см). Обычно в радиолокаторах питание от источника довольно высокого напряжения подается на магнетроны на очень короткое время (одна микросекунда или еще меньше), что позволяет получить очень высокую мгновенную мощность.

Н. — А как выводят эту мощность из магнетрона?

Перейти на страницу:

Похожие книги

100 способов избежать аварии. Спецкурс для водителей категории В
100 способов избежать аварии. Спецкурс для водителей категории В

Сколько раз, сидя перед экраном телевизора, вы вздрагивали, услышав визг тормозов? К сожалению, со стороны пассажирского сиденья он звучит еще страшнее. Все мы прекрасно знаем, что, садясь за руль, мы несем ответственность не только за себя и своих спутников, но и за всех участников дорожного движения.Так как же вести себя, если вы понимаете, что ситуация вышла из-под контроля и велика вероятность аварии?Александр Каминский, изучив часто случающиеся аварии, на страницах своей книги поделился опытом и секретами, как их избежать, а также подробно описал экстренные действия во время нештатных ситуаций.Книга написана живым и доступным языком и предназначена для широкого круга автовладельцев с различным стажем вождения. Желаем вам приятного чтения и надеемся, что чужой опыт, описанный в этой интересной книге, никогда не станет вашим!

Александр Юрьевич Каминский

Автомобили и ПДД / Техника