Читаем Электроника для начинающих полностью

где τ — это постоянная времени; C — емкость конденсатора в фарадах, который заряжается через резистор сопротивлением R в омах.

Возвращаясь к цепи, которую вы только что тестировали, используем резистор на 1 кОм и конденсатор емкостью 1000 мкФ.

Мы должны перевести эти значения в фарады и омы прежде, чем использовать их в формуле. Отлично, 1000 мкФ это 0,001 Ф и 1 кОм это 1000 Ом, поэтому формула будет выглядеть следующим образом:

τ = 1000 х 0,001

Другими словами, τ = 1 — вывод, который просто нельзя упростить еще больше для лучшего запоминания:

Резистор с сопротивлением 1 кОм, подсоединенный последовательно с конденсатором емкостью 1000 мкФ, имеет постоянную времени τ равную 1.

Означает ли это, что конденсатор будет полностью заряжен в течение 1 сек? Нет, все не так просто. τ — это постоянная времени, которая указывает время, нужное конденсатору, чтобы достичь 63 % от напряжения, которое подается на него, если в начале процесса конденсатор бел полностью разряжен, т. е. имел напряжение равное 0 В.

(Почему именно 63 %? Ответ на этот вопрос слишком сложен для того, чтобы его объяснить в рамках этой книги, и если вы хотите узнать больше о постоянной времени, то вам надо изучить другую литературу. При этом вам надо быть готовыми разбираться в дифференциальных уравнениях.) Здесь приведено формальное определение для сведения в будущем:

Постоянная времени τ — это время, которое необходимо конденсатору, чтобы он зарядился до значения, равного 63 % от разности между текущим напряжением на конденсаторе и напряжением подключенного источника питания. Когда τ = 1, конденсатор заряжается до значения 63 % от полной величины в течение 1 сек. Когда τ = 2, конденсатор заряжается до значения 63 % от полной величины в течение 2 сек. И т. д.

Что произойдет, если продолжить подавать напряжение?

История повторится снова. Конденсатор зарядится на следующие 63 % оставшейся разности между текущим значением напряжения и напряжением, которое будет к нему приложено.

Представим, что некто ест торт. Когда он первый раз кусает его и при этом еще голоден, то съедает 63 % за одну секунду (рис. 2.77).

Рис. 2.77. Если наш гурман каждый раз съедает только 63 % от торта, который в данный момент находится на тарелке, он «заряжает» свой желудок точно так же, как это делает конденсатор, когда заряжается. Не имеет значения, как много времени это займет, его желудок никогда не будет заполнен полностью

В течение второго откусывания он не хочет выглядеть слишком жадным и съедает только следующие 63 % от оставшейся части торта, и поскольку он уже не так голоден, ему потребуется столько же времени, сколько он потратил на поглощение первого куска. В течение третьего «подхода» он съедает еще 63 % от оставшейся части торта и потратит на это тоже количество времени и т. д. Он ведет себя точно так же, как конденсатор, когда «поедает» электричество.

Любитель тортов всегда будет оставлять что-то, что можно еще съесть, поскольку он никогда не отправляет в рот все 100 % оставшегося торта. Точно также, как и конденсатор никогда не может зарядиться полностью. В идеальном мире, состоящем из идеальных компонентов, этот процесс будет продолжаться бесконечное время.

В реальном времени мы можем произвольно сказать:

После периода, равного 5хτ, конденсатор будет заряжен практически полностью, и мы будем считать, что разница между имеющимся зарядом и полным зарядом ничтожно мала.

В табл. 2.3 приведен расчет (округлен до двух цифр после запятой), который показывает накопление заряда конденсатора в цепи с источником питания 12 В, когда постоянная времени равна 1 сек.

Здесь приведены пояснения к содержимому таблицы. V1 это текущее значение напряжения на конденсаторе в вольтах. Нужно вычесть это значение из напряжения источника питания (12 В), чтобы определить разность. Обозначим эту разность, как V2. Теперь возьмем 63 % от V2 (это V3) и добавим это значение к текущему значению напряжения (V1) и получим результат, который обозначим V4. Это новое значение напряжения, до которого конденсатор зарядится через 1 сек, поэтому мы копируем это значение в следующую строку таблицы и оно становится новым текущим значением напряжения на конденсаторе V1.

Теперь повторим этот процесс снова и снова. На рис. 2.78 это показано в графической форме. Заметим, что через 5 сек конденсатор достигнет значения 11,92 В, что составляет 99 % от напряжения источника питания. Это должно быть достаточно близко, чтобы удовлетворить любым требованиям, которые могут встретиться в реальной ситуации.

Перейти на страницу:

Все книги серии Электроника

Твой первый квадрокоптер: теория и практика
Твой первый квадрокоптер: теория и практика

Детально изложены практические аспекты самостоятельного изготовления и эксплуатации квадрокоптеров. Рассмотрены все этапы: от выбора конструкционных материалов и подбора компонентов с минимизацией финансовых затрат до настройки программного обеспечения и ремонта после аварии. Уделено внимание ошибкам, которые часто совершают начинающие авиамоделисты. В доступной форме даны теоретические основы полета мультироторных систем и базовые понятия работы со средой Arduino IDE. Приведено краткое описание устройства и принципа работы систем GPS и Глонасс, а также современных импульсных источников бортового питания и литий-полимерных батарей. Подробно изложен принцип работы и процесс настройки систем, OSD, телеметрии, беспроводного канала Bluetooth и популярных навигационных модулей GPS Ublox. Рассказано об устройстве и принципах работы интегральных сенсоров и полетного контроллера.Даны рекомендации по подбору оборудования FPV начального уровня, приведен обзор программ дня компьютеров и смартфонов, применяемых при настройке оборудования квадрокоптера.Для читателей, интересующихся электроникой, робототехникой, авиамоделизмом

Валерий Станиславович Яценков

Развлечения
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника