Если электроны двигаются свободно, то они не совершают работы. Если у вас имеется замкнутая цепь из провода с нулевым сопротивлением, и вы каким-либо образом создадите в нем поток электронов (электрический ток), то он может перемещаться по проводу бесконечно долго. (Это то, что происходит внутри сверхпроводников — картина почти аналогична.)
В обычных условиях провод имеет то или иное значение сопротивления. Сила, которая нужна, чтобы «проталкивать» электроны по проводу, известна как «напряжение», она создает ток, который может выделять тепло, наблюдаемое вами при закорачивании батареи питания. (Если используемый вами провод имеет нулевое сопротивление, то поток электронов, который по нему движется, не будет создавать какую-либо теплоту). Мы можем использовать тепло напрямую, как это делается при эксплуатации электропечи, или же мы можем использовать электрическую энергию другими способами — для запуска двигателя, например. Тем или иным способом мы отбираем энергию электронов для того, чтобы выполнять какую-либо работу.
Один вольт может быть представлен, как единица напряжения, которая нужна для создания тока величиной 1 А, совершающего работу величиной 1 Вт. Как уже было определено ранее:
1 Вт = 1 В х 1 А. Однако эта формула может быть переписана и по-другому:
1 в = 1 вт/1 а.
Эта форма записи более правильная, поскольку «ватт» в принципе может быть определен, как неэлектрическая единица измерения. Только для расширения ваших знаний мы можем вернуться назад к метрической системе единиц:
1 ватт = 1 джоуль/сек.
1 джоуль — это единица работы (энергии), равная работе силы величиной в 1 ньютон при перемещении тела на расстояние в 1 метр в направлении действия силы; 1 ньютон — это сила, которая необходима, чтобы придать телу массой 1 кг скорость 1 м/сек в течение 1 секунды.
На этой основе электрические единицы могут быть связаны с измерениями массы, времени и заряда электронов.
Рассуждая с практической точки зрения
Для практических задач интуитивное понимание того, что такое электричество, может быть более полезным, чем теория.
Лично я предпочитаю аналогии с водой, которые использовались десятилетиями для объяснения электричества. На рис. 1.67 показан высокий наполовину заполненный водой бак, в котором почти у дна сделано отверстие. Представим, что этот бак электрическая батарейка. Высоту воды можно сравнить с напряжением. Объем воды, который проходит через отверстие в секунду, можно сравнить с силой тока в амперах. Малая величина отверстия сравнима с большим сопротивлением.
Рис. 1.67.
А где же прячется мощность на этой картинке? Предположим, что рядом с баком расположено небольшое водяное колесо, которое будет крутиться потоком воды из отверстия. Мы можем подключить какой-либо механизм к этому водяному колесу. Теперь поток будет совершать некоторую работу. Имейте в виду, что мощность это мера работы, иначе говоря, мощность равна отношению работы к промежутку времени, в течение которого она совершается.
Может быть, это выглядит, как будто мы получаем что-то даром, извлекая работу из водяного колеса, не возвращая какую-либо энергию обратно в систему. Но помните, уровень воды в баке падает. Но как только я добавлю несколько помощников, которые будут перетаскивать воду обратно в сосуд (рис. 1.68), вы сможете увидеть, что мы обязательно должны совершить работу, чтобы получить ее обратно.
Рис. 1.68.
Аналогичным образом батарея отдает энергию не получая ничего, лишь только химические реакции внутри батареи будут преобразовывать чистые металлы в металлические соединения, а мощность, которую мы извлекаем из батарейки, не дает возможности изменить это состояние. Если же это аккумуляторная батарея (аккумулятор), то мы можем «помещать» энергию обратно в нее, направляя химическую реакцию в обратном направлении.
Возвращаясь обратно к сосуду с водой, предположим, что мы не можем извлечь достаточно мощности из него, чтобы крутить колесо. Одним способом решения проблемы будет добавление воды. Больший уровень воды приведет к более высокому давлению и соответственно большему напору воды (рис. 1.69). Это будет то же самое, что и удвоение напряжения при последовательном соединении двух батареек, когда отрицательный вывод одной батарейки подключается к положительному выводу другой (рис. 1.70). В течение всего времени пока сопротивление в цепи будет оставаться неизменным, увеличение напряжения будет приводить к соответствующему увеличению тока, поскольку ток равен напряжению, деленному на сопротивление.