Читаем Электроника для начинающих (2-е издание) полностью

Теперь вы настроили все для преобразования аналогового входного сигнала в числовое значение. Но погодите, здесь чего-то не хватает. У схемы нет выхода!

В идеальном мире плата Arduino Uno продавалась бы с маленьким алфавитно-цифровым дисплеем, чтобы вы могли использовать ее как настоящий компьютер. В принципе, вы можете раздобыть дисплей, который будет работать с платой Arduino, но опять-таки это внесло бы дополнительную сложность. Микроконтроллер не является устройством «подключи и работай». Чтобы отправлять информацию на дисплей, микроконтроллер нужно сначала запрограммировать.

Поэтому я упрощу задачу. Индикатором в нашем устройстве будет маленький желтый светодиод на плате Arduino. Представим себе, что этот индикатор является комнатным обогревателем, который включается, когда холодно, и выключается, когда тепло.

<p>Гистерезис</p>

Предположим, мы нагреваем теплицу, температура в которой должна составлять 30 °C. Допустим, напряжение комбинации «терморезистор-резистор» при этой температуре составляет 2,3 В. Отыщите его на графике (см. рис. 5.89), и вы увидите, что АЦП внутри микроконтроллера преобразует это напряжение в числовое значение около 470.

Таким образом, наш порог – 470. Если значение снижается до 469, мы включаем нагрев (или имитируем его включением светодиода). Если значение возрастает до 471, мы выключаем нагрев.

Однако, постойте. Имеет ли это смысл? Ведь даже самое небольшое повышение температуры, воспринимаемое терморезистором, будет включать светодиод, а незначительное понижение будет выключать его. Система будет все время включаться и выключаться.

Обычный термостат не реагирует на небольшие изменения температуры, когда кто-то открывает или закрывает дверь. Когда он включается, он остается включенным до тех пор, пока температура не станет чуть выше установленного значения. Затем, когда он прекращает нагрев, он остается выключенным, пока температура не опустится немного ниже указанного значения.

Такое поведение называется гистерезисом, и я расскажу о нем более детально в связи с компонентом, который называется компаратором, в моей следующей книге – продолжении данной: Make: More Electronics.

Как мы можем реализовать гистерезис в программе для микроконтроллера? Нам необходим более широкий диапазон значений, чем числа от 469 до 471. Программа могла бы описывать следующее: «Если светодиод включен, пусть он остается в этом состоянии, пока значение температуры не превысит 490. Затем его следует выключить». А также: «Если светодиод выключен, пусть он будет в таком состоянии, пока значение температуры не упадет ниже 460. Затем его надо включить».

Сможем ли мы это сделать? Да, очень легко. Программа, представленная в листинге 5.1, функционирует именно так. Протестировав эту программу, я сделал снимок экрана в среде Arduino IDE, и поэтому у меня есть веские основания полагать, что она работает.

Листинг 5.1

Эта программа содержит также некоторые новые понятия – но для начала введите ее в среду IDE. Не обязательно включать все строки комментариев, которые я добавил только для пояснения.

В более коротком варианте программы (листинг 5.2) строки комментариев опущены.

Листинг 5.2

Выполните проверку/компиляцию вашей программы и при необходимости исправьте опечатки (возможно, вы где-либо пропустили точку с запятой – это самая распространенная ошибка).

Подключите плату Arduino, загрузите программу, и если температура вашего терморезистора ниже 30 °C, должен зажечься желтый светодиод.

Нагрейте терморезистор, зажав его между пальцами, как будто температура в помещении увеличилась. Спустя несколько секунд светодиод погаснет. Теперь отпустите терморезистор, и он остынет, но светодиод еще продолжит гореть некоторое время, потому что гистерезис в данной системе заставляет выждать, пока температура не станет достаточно низкой. В конечном счете, светодиод загорится снова. Получилось!

Но как же работает эта программа?

<p>Строка за строкой</p>

В программе существует такое понятие, как переменная. Это небольшая область памяти микроконтроллера, где может храниться числовое значение. Вы можете представить ее как «ячейку памяти». Из программы можно обратиться к ячейке при помощи имени переменной. Внутри ячейка содержит числовое значение.

Строка int digitemp = 0; означает, что объявил переменную с именем digitemp. Она является целочисленной (целым числом) и принимает значения начиная с нуля.

В строке int ledstate = 0; я объявил еще одну целочисленную переменную, чтобы отслеживать состояние светодиода на плате (включен или выключен). Нельзя попросить микроконтроллер посмотреть на светодиод и сказать, в каком он состоянии, поэтому я должен самостоятельно предусмотреть все требуемые действия.

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника