Читаем Электроника для начинающих (2-е издание) полностью

Этот эксперимент более важен, чем кажется. Учитывайте то, что когда вы вталкиваете магнит в катушку, он индуцирует ток в одном направлении, а когда вынимаете – в другом. Фактически, вы создаете переменный ток.

Рис. 5.24. Диод позволяет заряжать конденсатор от катушки с магнитом

Диод позволяет току течь в цепи только в одном направлении. Он блокирует противоположно направленный ток, и таким образом конденсатор накапливает заряд. Если вы сделаете заключение о том, что диоды позволяют преобразовать переменный ток в постоянный, то будете абсолютно правы. Мы говорим, что диод «выпрямляет» переменный ток.

<p>Переходим к исследованию звука</p>

Эксперимент 25 показал, что подача напряжения может порождать магнит. Эксперимент 26 продемонстрировал, что перемещение магнита может генерировать напряжение. Теперь мы готовы применить эти принципы для обнаружения и воспроизведения звука.

<p>Эксперимент 27. Разбираем динамик</p>

Вы видели, что проходящий через обмотку электрический ток может создать магнитную силу, которой достаточно для того, чтобы притянуть небольшой металлический объект. А что если обмотка очень легкая, а объект тяжелый? В таком случае обмотка будет притягиваться к объекту. Этот принцип лежит в основе работы динамика.

Чтобы понять, как работает динамик, нет ничего лучше, чем разобрать его. Возможно, вы предпочитаете не тратить лишние деньги на такой деструктивный, но обучающий процесс – можно тогда найти на распродаже подержанных вещей неработающее аудиооборудование и вынуть из него динамик. Или просто посмотрите на мои фотографии, иллюстрирующие процесс.

<p>Что вам понадобится</p>

• Самый дешевый динамик, диаметром как минимум 5 см (1 шт.)

• Универсальный нож (1 шт.)

<p>Как вскрыть динамик</p>

На рис. 5.25 показана задняя сторона небольшого динамика. Магнит находится в герметичном цилиндрическом кожухе.

Переверните динамик лицевой стороной вверх, как показано на рис. 5.26. Разрежьте его диффузор по периметру острым универсальным ножом или лезвием X-Acto. Затем выполните разрез вокруг центральной части и удалите получившееся кольцо из черной бумаги.

Рис. 5.25. Маленький динамик (вид сзади)

Рис. 5.26. Передняя сторона динамика

Динамик без диффузора показан на рис. 5.27. Желтая ткань в центре – это гибкая секция, которая в обычном состоянии позволяет диффузору двигаться внутрь и наружу и не дает возможности отклоняться в стороны.

Сделайте надрез по внешнему краю желтой ткани, и тогда вы сможете вытянуть спрятанный бумажный цилиндр, вокруг которого намотана медная обмотка, как показано на рис. 5.28. На фотографии я для наглядности перевернул ее.

Два конца этой медной обмотки обычно получают питание через гибкие провода от двух выводов на задней стороне динамика. Когда катушка находится внутри канавки, которая видна на магните, она реагирует на колебания напряжения, и в ответ на магнитное поле создает силу, направленную вверх или вниз. Это приводит к вибрации диффузора динамика и создает звуковые волны.

Рис. 5.27. Динамик с удаленным диффузором

Рис. 5.28. Медная обмотка динамика обычно расположена внутри кольцеобразной канавки магнита

Большие динамики в вашей стереосистеме работают по такому же принципу. Просто у них магниты больше, а катушки способны выдержать большую мощность (обычно до 100 Вт).

Всякий раз, когда я разбираю такой небольшой компонент, как этот, я поражаюсь точности и тонкости его деталей, а также тому, как он может выпускаться массово при такой низкой цене. Я представляю, как удивились бы Фарадей, Генри и другие первопроходцы в исследовании электричества, если бы они увидели эти компоненты, сегодня воспринимаемые нами как должное. Чтобы создать электромагниты, которые были гораздо менее эффективными, чем этот дешевый маленький динамик, Генри вручную несколько дней наматывал катушки.

<p>История создания динамиков</p>

Как я упоминал в начале этого эксперимента, обмотка будет перемещаться, если ее магнитное поле взаимодействует с массивным или с закрепленным объектом. Если этот объект является постоянным магнитом, обмотка будет взаимодействовать с ним сильнее, приводя к более энергичному движению. Так и работает динамик.

Эта идея была предложена в 1874 году плодовитым немецким изобретателем Эрнстом Сименсом. (В 1880 году он также построил первый в мире лифт с электрическим приводом.) Сегодня компания Siemens AG – один из самых крупных производителей электроники в мире.

Когда Александер Грейам Белл запатентовал телефон в 1876 году, он воспользовался идеей Сименса для создания звуковых частот в динамике телефонной трубки. С этого момента устройства воспроизведения звука постепенно становились качественнее и мощнее, до тех пор пока в 1925 году Честер Райс (Chester Rice) и Эдвард Келлог (Edward Kellog) из компании General Electric не опубликовали документ, устанавливающий основные принципы, которые и сейчас используются при разработке динамиков.

Перейти на страницу:

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника