Читаем Электроника для начинающих (2-е издание) полностью

Таким образом, номинал резистора составит 150 Ом. Но вовсе не обязательно, чтобы светодиод обеспечивал максимальную световую отдачу, а возможно даже, что у вас окажется светодиод, у которого предельный ток меньше 20 мА. Кроме того, если схема питается от автономного источника, то желательно уменьшить потребление энергии, чтобы батареи хватило на более долгое время. Учитывая это, вы можете выбрать более высокий стандартный номинал резистора — 220 Ом.

<p id="bookmark79">Нагрев проводов</p>

Я уже упоминал, что провода имеют очень низкое сопротивление. Настолько ли оно мало, что его всегда можно игнорировать? Не совсем так. Если по проводу протекает большой ток, провод будет нагреваться, как вы сами могли это увидеть, когда замыкали 1,5-вольтовую батарею в эксперименте 2. И если провод становится горячим, вы можете быть уверены, что некоторое напряжение падает на самом проводе, в результате для любого подключенного устройства напряжение окажется меньше расчетного.

Опять-таки, чтобы провести расчеты, пригодится закон Ома.

Предположим, что очень длинный отрезок провода имеет сопротивление 0,2 Ом. Вы желаете пропустить через него ток в 15 А, чтобы запустить устройство, которое потребляет много энергии.

Начинаем с выписывания известных величин:

R = 0,2 (сопротивление провода)

I = 15 (сила тока в цепи)

Вам нужно найти падение напряжения между двумя концами провода (V). Поэтому следует выбрать тот вариант закона Ома, который содержит символ V слева:

V = I × R

Теперь подставим значения:

V = 15 × 0,2 = 3 В

Три вольта — несущественная величина, если у вас есть высоковольтный источник питания, но когда вы используете автомобильный аккумулятор на 12 В, такой отрезок провода будет потреблять четверть от имеющегося напряжения.

Теперь вы знаете, почему проводка в автомобилях выполнена довольно толстым кабелем — чтобы по возможности снизить падение напряжения.

<p id="bookmark80">Десятичные значения</p>

Легендарный британский политик сэр Уинстон Черчилль известен своими жалобами на «эти проклятые запятые». Он имел в виду десятичные запятые. Поскольку на тот момент Черчилль был министром финансов Великобритании и контролировал все расходы страны, его трудности при работе с десятичными числами представляли некоторую проблему. Тем не менее, он справился с делами при помощи устоявшейся в Великобритании традиции. Вы тоже сможете.

Предположим, у вас есть дробь, содержащая десятичные числа. Вы можете упростить ее, если перенесете десятичные запятые в числителе и в знаменателе дроби на одинаковое количество разрядов. Так, если бы вы пожелали узнать результат деления 7/0,02, чтобы подобрать последовательный резистор для светодиода, то могли бы просто передвинуть запятые на два знака вправо:

7 / 0,02 = 700 / 2

Заметьте, что если вы передвигаете десятичную запятую за правую границу числа, то в каждый дополнительный разряд следует добавить ноль. Поэтому когда вы двигаете десятичную запятую в числе 7,0 на два знака вправо, то получаете 700.

А если у вас десятичные запятые при умножении чисел? Например, вам надо умножить 0,03 на 0,002. Поскольку сейчас вы умножаете, а не делите, следует переносить запятые в противоположных направлениях. Вот так:

0,03 × 0,002 = 3 × 0,00002

Результат равен 0,00006. Повторю еще раз, если для вас это слишком сложно, пользуйтесь калькулятором. Но иногда быстрее считать с помощью ручки и бумаги или даже вычислить все в уме.

<p id="bookmark81">Математика вашего языка</p>

Я возвращаюсь к вопросу, который задавал в предыдущем эксперименте: почему ваш язык не стал горячим?

Теперь, когда вы знаете закон Ома, можно выразить ответ в числах. Давайте предположим, что батарея выдает заявленное напряжение 9 В, а ваш язык имеет сопротивление 50 кОм, т. е. 50 000 Ом. Как всегда, начнем с записи известных величин:

V = 9

R = 50 000

Вам нужно узнать силу тока, I, поэтому запишем формулу закона Ома так, чтобы этот параметр находится слева:

I = V / R

Подставляем числа:

I = 9 / 50 000 = 0,00018 А

Переместите десятичную запятую на три знака, чтобы перевести амперы в миллиамперы:

I = 0,18 мА

Это очень маленький ток и он не дает значительного количества тепла.

А что было, когда вы замкнули батарею? Какое количество тока нагрело провода? Допустим, провода имеют сопротивление ОД Ом (возможно, оно меньше, но давайте начнем с 0,1 в качестве предположения). Запишите известные значения:

V = 1,5 R = 0,1

И снова я пытаюсь вычислить I, силу тока, поэтому используется формула:

I = V / R

Подставим числа:

I = 1,5/0,1=15 А

Это почти в 100 000 раз больше тока, который мы пропускали через язык. В тонком проводе такой ток выделяет значительное количество тепла.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки