Читаем Электроника для начинающих (2-е издание) полностью

<p id="bookmark470">Подведение итогов</p>

Теперь я готов ответить на вопрос: «Что следует предпочесть — микроконтроллеры или традиционные дискретные компоненты?»

Мой ответ таков: вам понадобится и то, и другое. Именно поэтому я включил микроконтроллеры в книгу, которая в основном рассказывает о дискретных электронных компонентах.

В следующем эксперименте я покажу, как датчик и микроконтроллер могут работать совместно.

<p>Эксперимент 33. Исследуем окружающий мир</p>

Переключатель либо включен, либо выключен, однако большинство значений, которые мы получаем из окружающего мира, обычно находятся между этими крайностями. Например, терморезистор — это датчик, электрическое сопротивление которого изменяется в широком диапазоне, в зависимости от температуры.

Микроконтроллер был бы очень полезен для обработки такого входного сигнала. Например, получая входной сигнал от терморезистора, микроконтроллер поддерживает заданную температуру, включая нагревательный элемент, если температура опускается ниже минимального значения, и выключая его, если в комнате достаточно тепло.

Микроконтроллер ATmega 328, установленный на плате Arduino Uno, может справиться с этой задачей, поскольку шесть из его выводов относятся к числу «аналоговых входов». Сигнал, поданный на эти входы, не оценивается как «логически высокий» или как «логически низкий». Он преобразуется внутри микросхемы с помощью аналого-цифрового преобразователя или АЦП.

В 5-вольтовой версии платы Arduino аналоговый сигнал на входе должен быть в диапазоне от О до 5 В. На самом деле, верхний предел можно изменять, что вносит некоторую сложность, поэтому я оставлю рассказ об этом на потом. Терморезистор не вырабатывает никакого напряжения, он только изменяет свое сопротивление. Так, необходимо придумать, каким образом изменение сопротивления обеспечит изменение напряжения.

Как только эта проблема будет решена, АЦП внутри микроконтроллера сможет преобразовать напряжение на аналоговом выводе в числовое значение в диапазоне от 0 до 1023. Почему именно такой числовой диапазон? Потому что его можно выразить десятью двоичными цифрами, а число разрядов АЦП в микроконтроллере на плате Arduino равно десяти.

После того как АЦП выдал число, ваша программа может сравнить его с заданным значением и предпринять соответствующие действия, например, изменить состояние вывода, подающего напряжение на твердотельное реле, которое включает комнатный нагреватель.

Эта последовательность операций, начиная с терморезистора и заканчивая числовым значением, проиллюстрирована на рис. 5.86.

Рис. 5.86. Упрощенная последовательность обработки сигнала от терморезистора

Следующий эксперимент покажет, как это осуществить.

<p id="bookmark472">Что вам понадобится</p>

• Макетная плата, монтажный провод, инструмент для зачистки проводов, кусачки, тестовые провода, мультиметр

• Терморезистор номиналом 10 кОм, с допуском 1 или 5% (1 шт.) (Он должен быть типа NTC, что означает «сопротивление падает по мере увеличения температуры». Терморезистор типа РТС ведет себя противоположным образом.)

• Плата Arduino Uno (1 шт.)

• Ноутбук или настольный компьютер со свободным USB-портом (1 шт.)

• USB-кабель с разъемами типа А и В на противоположных концах (1 шт.)

• Резистор номиналом 6,8 кОм (1 шт.)

• Исследование терморезистора

Первый шаг — изучить, что собой представляет терморезистор. Он имеет очень тонкие выводы, потому что они не должны проводить тепло к верхней части или забирать его оттуда, поскольку там располагается p-n-переход, реагирующий на изменение температуры. Эти выводы, вероятно, слишком тонкие, чтобы надежно фиксироваться в макетной плате, поэтому я предлагаю вам зажать их парой тестовых проводов с «крокодилами» и подключить к щупам мультиметра, как показано на рис. 5.87.

Терморезистор, который я рекомендую, имеет номинал 10 кОм. Это максимальное значение, когда компонент становится совсем холодным. Его сопротивление меняется слабо, пока температура не повысится до 25 °С. После этого сопротивление будет уменьшаться быстрее.

Вы можете проверить это с помощью мультиметра. При комнатной температуре терморезистор должен иметь сопротивление около 9,5 кОм. Теперь зажмите его между большим и указательным пальцами. Поскольку он поглощает тепло вашего тела, его сопротивление снижается. При температуре тела (приблизительно 37 °С) сопротивление составит около 6,5 кОм.

Как преобразовать этот диапазон сопротивлений в необходимый для микроконтроллера диапазон напряжений от 0 до 5 В?

Вначале примите во внимание то, что максимальное значение, которое соответствует комнатной температуре, должно быть ниже 5 В. Окружающий мир непредсказуем. А вдруг по какой-то непонятной причине терморезистор нагреется гораздо сильнее, чем вы рассчитывали? Возможно, вы положили рядом с ним паяльник или же оставили его на нагретом участке электронного оборудования.

Рис. 5.87. Проверка терморезистора
Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки