Читаем Электроника для начинающих (2-е издание) полностью

Большие динамики в вашей стереосистеме работают по такому же принципу. Просто у них магниты больше, а катушки способны выдержать большую мощность (обычно до 100 Вт).

Всякий раз, когда я разбираю такой небольшой компонент, как этот, я поражаюсь точности и тонкости его деталей, а также тому, как он может выпускаться массово при такой низкой цене. Я представляю, как удивились бы Фарадей, Генри и другие первопроходцы в исследовании электричества, если бы они увидели эти компоненты, сегодня воспринимаемые нами как должное. Чтобы создать электромагниты, которые были гораздо менее эффективными, чем этот дешевый маленький динамик, Генри вручную несколько дней наматывал катушки.

<p id="bookmark410">История создания динамиков</p>

Как я упоминал в начале этого эксперимента, обмотка будет перемещаться, если ее магнитное поле взаимодействует с массивным или с закрепленным объектом. Если этот объект является постоянным магнитом, обмотка будет взаимодействовать с ним сильнее, приводя к более энергичному движению. Так и работает динамик.

Эта идея была предложена в 1874 году плодовитым немецким изобретателем Эрнстом Сименсом. (В 1880 году он также построил первый в мире лифт с электрическим приводом.) Сегодня компания Siemens AG — один из самых крупных производителей электроники в мире.

Когда Александер Грейам Белл запатентовал телефон в 1876 году, он воспользовался идеей Сименса для создания звуковых частот в динамике телефонной трубки. С этого момента устройства воспроизведения звука постепенно становились качественнее и мощнее, до тех пор пока в 1925 году Честер Райс (Chester Rice) и Эдвард Келлог (Edward Kellog) из компании General Electric не опубликовали документ, устанавливающий основные принципы, которые и сейчас используются при разработке динамиков.

На сайтах, таких как Radiola Guy (http://bit.ly/radiolaguy), вы найдете фотографии очень красивых старинных динамиков, которые для максимальной эффективности были снабжены рупором, как показано на рис. 5.29. По мере того, как усилители звука стали мощнее, эффективность динамиков отошла на второй план, и гораздо важнее стали качество воспроизведения и минимальная стоимость производства. Сегодняшние динамики преобразуют лишь около 1% электрической энергии в звуковую.

Рис. 5.29. Этот красивый динамик Amplion AR-114x иллюстрирует попытки дизайнеров добиться максимальной эффективности в эру, когда мощность звуковых усилителей была очень ограничена (Фото предоставлено «Sonny, the RadiolaGuy»)<p id="bookmark411">Звук, электричество и снова звук</p>

Пришло время получить более конкретное представление о том, как звук превращается в электрический ток и обратно в звук.

Предположим, кто-то ударил в гонг палкой, как показано на рис. 5.30. Плоская металлическая поверхность гонга вибрирует в обе стороны, создавая волны сжатия, которые воспринимаются нашим ухом как звук. За каждой волной высокого давления воздуха следует спад в виде низкого давления воздуха, а длина волны звука — это расстояние (как правило, от нескольких метров до миллиметров) между одним пиком давления и следующим.

Частота звука — это число волн за секунду, обычно она выражается в герцах.

Рис. 5.30. Удар в гонг вызывает вибрацию его гладкой поверхности. В результате в воздухе возникают волны сжатия и растяжения

Предположим, мы поместили очень чувствительную маленькую мембрану из тонкого пластика на пути волн сжатия. Она будет колебаться в ответ на волны, подобно листку, который трепещет на ветру. Допустим, мы прикрепили маленькую катушку индуктивности из очень тонкого провода к обратной стороне мембраны, так что она движется вместе с мембраной. Давайте также поместим внутри катушки неподвижный магнит. Эта конструкция напоминает крошечный ультрачувствительный динамик, за исключением того, что не электричество порождает звук, а звук будет вырабатывать электричество. Волны сжатия вызывают колебание мембраны вдоль оси магнита, а магнитное поле создает колеблющееся напряжение в проводе. Сказанное иллюстрирует рис. 5.31.

Такое устройство называется микрофоном с подвижной катушкой. Есть и другие способы создания микрофона, но эта конструкция самая простая для понимания. Конечно, напряжение, которое он генерирует, очень мало, но мы можем усилить его с помощью транзистора или ряда транзисторов, как предложено на рис. 5.32.

Затем мы можем подать выходной сигнал на обмотку, намотанную вокруг горловины динамика, и динамик будет воспроизводить волны сжатия в воздухе, как показано на рис. 5.33.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки