Читаем Электроника для начинающих (2-е издание) полностью

• Большая отвертка (1 шт.)

• Провод 22-го калибра (диаметр 0,64 мм) или тоньше (не более 1,8 метра)

• Батарея на 9 В (1 шт.)

• Скрепка (1 шт.)

<p id="bookmark395">Несложный опыт</p>

Все очень просто. Намотайте провод на стержень отвертки возле ее наконечника. Витки должны быть аккуратными, плотными, расположенными близко друг к другу, вам необходимо сделать 100 витков, которые умещаются на расстоянии не более 5 см. Чтобы уместить их на таком пространстве, вам потребуется наматывать витки поверх предыдущих. Для надежности последний виток закрепите изолентой.

Теперь подключите к концам провода 9-вольтовую батарею. На первый взгляд, может показаться, что так делать нельзя, поскольку вы замкнете батарею накоротко, как это было в эксперименте 2. Но когда вы пропускаете ток через провод, который образует витки, а не является прямым, электрический ток действует иначе и способен выполнить определенную работу (например, он может двигать скрепку). Поместите небольшую скрепку рядом с наконечником отвертки, как показано на рис. 5.9.

Рис. 5.9. Этот простейший электромагнит способен притянуть скрепкуРис. 5.10. Самая простая схемаРис. 5.11. Когда электрический ток протекает слева направо по этому проводнику, он индуцирует магнитное поле, показанное стрелками

Поверхность должна быть гладкой, чтобы скрепка могла свободно скользить. Поскольку многие отвертки являются магнитными, может получиться так, что скрепка и без подачи тока притягивается к наконечнику отвертки. Если это происходит, отодвиньте скрепку за пределы зоны притяжения. Теперь подайте ток в цепь, и скрепка должна сразу же притянуться к кончику отвертки. Поздравляю, вы только что собрали электромагнит. Его электрическая схема показана на рис. 5.10.

<p id="bookmark396">Индуктивность</p>

Когда электрический ток течет по проводу, он создает вокруг него магнитное поле (рис. 5.11). Поскольку электричество «индуцирует» этот эффект, он называется индуктивностью.

Поле вокруг прямого провода очень слабое, но если вы свернете провод в кольцо, силовые линии магнитного поля будут концентрироваться, действуя по направлению через центр круга, как показано на рис. 5.12. Если мы добавим больше витков, создав обмотку, то концентрация силовых линий еще больше возрастет. А если мы поместим стальной или железный объект (например, отвертку) в центр обмотки, ее эффективность увеличится еще больше.

Рис. 5.12. Когда проводник согнут в виде кольца, результирующее магнитное поле концентрируется внутри, как показано большой стрелкой Рис. 5.13. Графики зависимости индуктивности от размеров обмотки и числа витков в ней и приближенная расчетная формула

На рис. 5.13 это показано в виде графиков, наряду с формулой, известной как «приближение Уилера», которая позволяет приблизительно вычислить индуктивность катушки, если вы знаете внутренний и внешний радиусы, ширину и число витков обмотки. (Значения должны быть в дюймах, а не в метрической системе.) Основная единица индуктивности — генри, названная в честь американского первопроходца в изучении электричества Джозефа Генри. Поскольку это очень крупная единица (подобно фараду), формула выражает индуктивность в микрогенри.

Как видно из графиков, если оставить основной размер обмотки без изменений, но удвоить число витков (используя более тонкий провод или провод с более тонкой изоляцией), то реактивное сопротивление катушки вырастет в 4 раза. Это вызвано тем, что числитель формулы содержит множитель NxN.

Ключевые моменты:

• При увеличении диаметра обмотки растет и индуктивность.

• Индуктивность увеличивается приблизительно пропорционально квадрату числа витков. Другими словами, если число витков будет в три раза больше, то индуктивность возрастет в девять раз.

• При одинаковом числе витков индуктивность окажется меньше, если обмотка тонкая и широкая, и больше, если обмотка толстая и узкая.

<p id="bookmark397">Обозначения катушки индуктивности и термины</p>

На рис. 5.14 приведены обозначения катушки индуктивности. Если смотреть слева направо, то первыми двумя символами обозначают катушку с воздушным сердечником (первый символ более старый, чем второй). Третий и четвертый символы указывают на то, то обмотка намотана вокруг твердого железного сердечника или вокруг сердечника, содержащего частички железа или феррита, соответственно. Железный сердечник будет увеличивать индуктивность катушки, поскольку он усиливает магнитный эффект.

Рис. 5.14. Обозначение катушек индуктивности на схемах
Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки