Читаем Электроника для начинающих (2-е издание) полностью

Когда вы запустите проверку, заметьте, что каждое изменение состояния крайнего справа красного светодиода (либо с включенного на выключенное, либо с выключенного на включенное) происходит всегда, когда желтый светодиод гаснет. Почему это так?

Большинство счетчиков запускается по перепаду. Это означает, что восходящий (фронт импульса) или нисходящий перепад уровня (спад импульса) переводит счетчик на следующее значение в серии, если импульс подается на тактирующий вход. Поведение светодиодов четко показывает вам, что счетчик 74НС393 запускается по спаду. В эксперименте 19 мы использовали счетчик, который активировался по фронту. Тип счетчика зависит от вашего конкретного устройства.

Счетчик 74НС393 также имеет вывод сброса, подобно микросхеме 4026В из эксперимента 19.

Замечание

В некоторых технических паспортах вывод сброса описывается как вывод «главного сброса», который может обозначаться как MR (master reset). Некоторые производители называют вывод сброса выводом «стирания», что может быть сокращено до CLR (clear).

Как бы он ни назывался, результат работы вывода сброса всегда одинаков. Он заставляет все выходы счетчика перейти в низкое состояние — в данном случае это означает двоичное число 0000.

Для сброса необходимо подать отдельный импульс. Но когда происходит сброс: когда импульс возникает или же когда он заканчивается?

Давайте выясним. Если вы собрали схему правильно, то на выводе сброса поддерживается низкий уровень благодаря резистору 10 кОм. Но здесь присутствует также и кнопка, которая может соединять вывод сброса напрямую с положительной шиной. Нажатие кнопки переводит вывод сброса в высокое состояние.

Как только вы нажмете кнопку, все выходы станут темными, и они будут оставаться такими, пока вы не отпустите кнопку. Очевидно, функция сброса в микросхеме 74НС393 запускается и удерживается с помощью высокого состояния.

<p id="bookmark374">Коэффициент пересчета</p>

Выключите питание, отсоедините нагрузочный резистор и кнопку от вывода сброса (вывод 2) и замените провод, как показано на рис. 4.138. Все предыдущие соединения обесцвечены. Новый провод, черный, соединяет четвертый разряд, от выхода D, с выводом сброса. На рис. 4.139 показан измененный вариант на макетной плате. Новая перемычка установлена слева от микросхемы.

Как вы думаете, что произойдет?

Запустите счетчик снова. Он ведет счет от 0000 до 0111. Следующим двоичным значением на выходе было бы 1000, но как только четвертый разряд переходит от 0 к 1, высокое состояние распознается выводом сброса, который заставляет счетчик обнулиться.

Можно ли заметить мигание крайнего левого светодиода, прежде чем счетчик сбросится?

Вряд ли, поскольку счетчик реагирует меньше чем за миллионную долю секунды.

Прежде чем запустить автоматический повтор, счетчик теперь считает от 0000 до 0111. Поскольку счет от 0000 до 0111 в двоичной системе эквивалентен счету от 0 до 7 в десятичной, теперь у нас есть счетчик-делит ель на 8. (Ранее он был счетчиком-делителем на 16.)

Предположим, вы переключили провод сброса от четвертого разряда к третьему. Теперь у вас счетчик-делитель на 4.

Рис. 4.138. Добавлен автоматический сброс счетчика Рис. 4.139. Увеличенный фрагмент измененного варианта на макетной плате

Замечание

Вы можете легко подключить почти любой 4-раз- рядный двоичный счетчик так, чтобы он сбрасывался после 2,4 или 8 входящих импульсов.

Количество состояний выхода счетчика, прежде чем он начнет повторный счет, называется коэффициентом пересчета (в англоязычных описаниях — модуль счета, часто сокращается как «mod»). Счетчик mod-8 повторяет счет после восьми импульсов (которые нумеруются от 0 до 7).

<p id="bookmark375">Изменение коэффициента пересчета</p>

Как это связано с нашим устройством генерации значений электронных игральных костей? Перехожу к нему. Поскольку кубик имеет шесть сторон, мне кажется, что нам необходимо подключить счетчик так, чтобы он повторял счет после шести состояний.

В двоичном коде последовательность значений на выходе будет выглядеть следующим образом: 000, 001, 010, 011, 100, 101. Мы можем проигнорировать старший бит, в столбце D, поскольку при шести состояниях он нам не нужен. Необходимо, чтобы счетчик сбрасывался после значения 5 в десятичной системе, которое соответствует числу 101 в двоичной.

Почему 5, а не 6? Потому что мы начинаем считать с 0. Для наших целей было бы удобнее, если бы счетчик начинал работать с 1, но он так не делает.

Какое следующее выходное значение после двоичного числа 101? Ответ — 110 в двоичной системе.

Перейти на страницу:

Похожие книги

102 способа хищения электроэнергии
102 способа хищения электроэнергии

Рассмотрена проблема хищений электроэнергии и снижения коммерческих потерь в электрических сетях потребителей. Приведены законодательно–правовые основы для привлечения к ответственности виновных в хищении электроэнергии. Изложены вопросы определения расчетных параметров средств учета электроэнергии, показаны схемы подключения счетчиков электрической энергии. Описаны расчетные и технологические способы хищения электроэнергии. Обсуждаются организационные и технические мероприятия по обнаружению, предотвращению и устранению хищений.Для работников энергоснабжающих организаций и инспекторского состава органов Ростехнадзора. Материалы книги могут быть использованы руководителями и специалистами энергослужб предприятий (организаций) для правильного определения расчетных параметров средств учета и потерь электроэнергии в электрических сетях.Если потенциальные расхитители электроэнергии надеются найти в книге «полезные советы», они должны отдавать себе отчет, что контролирующие структуры информированы в не меньшей степени и, следовательно, вооружены для эффективной борьбы с противоправной деятельностью.Настоящая книга является переработанным и дополненным изданием выпущенной в 2005 г. книги «101 способ хищения электроэнергии».

Валентин Викторович Красник

Технические науки / Образование и наука
100 великих чудес инженерной мысли
100 великих чудес инженерной мысли

За два последних столетия научно-технический прогресс совершил ошеломляющий рывок. На что ранее человечество затрачивало века, теперь уходят десятилетия или всего лишь годы. При таких темпах развития науки и техники сегодня удивить мир чем-то особенным очень трудно. Но в прежние времена появление нового творения инженерной мысли зачастую означало преодоление очередного рубежа, решение той или иной крайне актуальной задачи. Человечество «брало очередную высоту», и эта «высота» служила отправной точкой для новых свершений. Довольно много сооружений и изделий, даже утративших утилитарное значение, тем не менее остались в памяти людей как чудеса науки и техники. Новая книга серии «Популярная коллекция «100 великих» рассказывает о чудесах инженерной мысли разных стран и эпох: от изобретений и построек Древнего Востока и Античности до небоскребов в сегодняшних странах Юго-Восточной и Восточной Азии.

Андрей Юрьевич Низовский

История / Технические науки / Образование и наука
Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки