В «настоящем» состоянии рис. 9 (показано в середине фигуры) поле представления GH, которое должно обозначаться пересечением конкретного наблюдающего существа с плоскостью фигуры, находится в середине плоскости. В «прошлом» состоянии рис. 9 (нижняя плоскость фигуры) это поле, т. е. линия пересечения, находится на DE, а в «будущем» состоянии рис. 9 (верхняя плоскость фигуры) — на FB. Следовательно, реагент 2, конкретное секущее существо, располагается на наклонной плоскости DFBE, изображающей его длительность.
Пересечение этой плоскости с плоскостью ABCD есть линия DB. Новое движущееся поле представления (поле 3) есть плоскость G'G" H"H'. Поскольку плоскость поля 3 движется по фигуре, линия ее пересечения с наклонной плоскостью DFBE (линия GH) перемещается по плоскости движущегося поля 3 в направлении линии G" H". Иначе говоря, поле 2 движется во Времени 2. Между тем точка О (где пересекаются три плоскости ABCD, DFBE и G'G" H"H') перемещается по движущейся линии GH в направлении к H. Иначе говоря, поле 1 движется во Времени 1[12].
Наш анализ, очевидно, можно продолжать подобным образом до бесконечности. В итоге мы получим одно-единственное многомерное поле представления в абсолютном движении — поле, движущееся по неподвижному субстрату объективных элементов, которые тянутся во всех временных измерениях. Движение этого конечного поля вызывает движение бесчисленных участков пересечения его самого с неподвижными элементами, причем участки пересечения являются полями представления с меньшим числом измерений. Далее, в бесконечности мы столкнемся со временем, отмеряющим все движения в разнообразных полях представления или движения этих полей. Это будет
Нам, заметим, никогда не удастся показать
Теперь природа серии начинает постепенно проясняться. Серия — это нечто вроде китайских коробочек, устроенных таким образом, что меньший член (коробочка) заключен в другом, ему подобном, но большем по размерам (в нашем случае имеющем на одно измерение больше) члене.
Законы серии можно легко сформулировать. Первый из них гласит:
Второй закон вводит понятие серийного наблюдателя. (Этот наблюдатель, разумеется, не тождествен серии наблюдателей, существующих независимо друг от друга.)
Содержимое моментов Времени 1, как мы видели, может последовательно представляться конечному наблюдателю только при условии, что содержимое моментов Времени 2 также представляется последовательно, равно как и содержимое моментов всех других Времен в серии. Значит, конечный наблюдатель — это наблюдатель поля представления, которое движется во Времени, расположенном на том краю серии, что уходит в бесконечность. А будучи наблюдателем этого поля, он является наблюдателем и всех других движущихся полей, подчиненных и имеющих меньшее число измерений.
Далее, точка О с самого начала была для нас местом, где происходит