Читаем Эйнштейн. Его жизнь и его Вселенная полностью

Неясно, насколько внимательно Эйнштейн прочитал статью, которую Гильберт послал ему, или что в ней повлияло на ход его мыслей, если вообще повлияло, когда он лихорадочно готовил свою кульминационную четвертую лекцию для Прусской академии. Как бы ни было дело, сделанные неделей ранее расчеты по орбите Меркурия и по искривлению лучей света помогли ему понять, что он мог избежать ограничений и условий на координаты, которых он требовал от своих уравнений гравитационного поля. Таким образом, к 25 ноября 1915 года – как раз к его последней лекции, называвшейся “Полевые уравнения гравитации”, – он подготовил систему ковариантных уравнений, увенчавших его общую теорию относительности.

Для неспециалиста этот результат был совсем не таким ярким, как, скажем, его знаменитое уравнение E = mc2. Тем не менее длинные сложные выражения оказалось возможно упростить с помощью компактной записи тензоров с индексами, и суть окончательных полевых уравнений Эйнштейна можно записать в таком компактном виде, что их можно печатать на футболках пижонистых студентов-физиков (что часто и делается). В одном из многочисленных его вариантов82 уравнение можно записать в виде:

Rμν– 1/2gμν R=8πTΜΝ.

В левой части уравнения стоит величина Rμν – тензор Риччи, который Эйнштейн ввел ранее; gμν – крайне важный метрический тензор, а член R является следом тензора Риччи и называется скаляром Риччи. Всю левую часть уравнения сейчас принято называть тензором Эйнштейна, и она может быть записана в сжатом виде просто как Gμν. Она несет всю информацию о том, как пространство – время деформируется и искривляется массивными объектами.

Правая часть описывает движение материи в поле тяготения. Взаимодействие правой и левой частей уравнения показывает, как объекты искривляют пространство – время и, в свою очередь, как эта кривизна влияет на движение объектов. Физик Джон Уилер выразил это так: “Материя говорит пространству – времени, как изогнуться, а искривленное пространство говорит материи, как двигаться”83.

Таким образом, вместе они танцуют космическое танго, или, как сформулировал это другой физик, Брайан Грин, “пространство и время стали игроками в эволюционирующем космосе. Они ожили. Материя здесь заставляет пространство деформироваться там, что вызывает движение материи здесь, а это, в свою очередь, побуждает пространство поодаль деформироваться еще больше, и т. д. Общая теория относительности стала хореографом постановки причудливого космического танца пространства, времени, материи и энергии”84.

Наконец, к его удовлетворению, у Эйнштейна появились по-настоящему ковариантные уравнения, в которые включены по крайней мере все формы движения – как инерционное, так и ускоренное, вращательное и произвольное. Как он заявил в официальной презентации своей теории, которую он опубликовал в марте следующего года в Annalen der Physik, “общие законы природы должны быть выражены через уравнения, справедливые во всех системах координат, то есть эти уравнения должны быть ковариантными относительно любых подстановок (общековариантными)” [54],85

Эйнштейн был в восторге от своего успеха, но в то же время беспокоился, что Гильберт, который представил в Геттингене свою собственную версию уравнений на пять дней раньше, получит часть почестей как соавтор теории. “Только один коллега в действительности понял ее, – писал он своему другу Генриху Цангеру, – и он ищет умные способы присвоения (нострификации – по выражению Абрагама) [55]. Исходя из моего личного опыта я вряд ли узнаю что-то новое об убогости человечества”. В письме к Бессо через несколько дней он добавил: “Мои коллеги ведут себя омерзительно в этом деле. Ты здорово повеселишься, когда я расскажу тебе об этом”86.

Так кто на самом деле заслуживает заслуги быть первым в выводе окончательных математических уравнений? Вопрос, кому принадлежит приоритет, Эйнштейну или Гильберту, породил небольшие, но горячие исторические дискуссии, некоторые из которых ведутся с такой страстью, что кажутся выходящими за рамки простого научного любопытства. Гильберт представил версию уравнений в докладе 16 ноября и статье, датированной 20 ноября, то есть раньше Эйнштейна, представившего свои окончательные уравнения 25 ноября. Тем не менее команда учеников Эйнштейна в 1997 году разыскала часть верстки статьи Гильберта, в которую Гильберт внес изменения и затем отправил обратно в издательство 16 декабря. В оригинальной версии уравнения Гильберта отличались в небольшом, но важном пункте от окончательной версии уравнений из лекции Эйнштейна 25 ноября. Они не были на самом деле общековариантными, и ими не предусматривалась свертка тензора Риччи и введение в уравнение его следа – скаляра Риччи. Эйнштейн сделал это в своей лекции от 25 ноября. По-видимому, Гильберт внес исправление в пересмотренный вариант статьи, для того чтобы он соответствовал версии Эйнштейна. Во внесенных исправлениях, когда он описывал гравитационные потенциалы, он великодушно добавил замечание “впервые введены Эйнштейном”.

Перейти на страницу:

Похожие книги

Адмирал Советского Союза
Адмирал Советского Союза

Николай Герасимович Кузнецов – адмирал Флота Советского Союза, один из тех, кому мы обязаны победой в Великой Отечественной войне. В 1939 г., по личному указанию Сталина, 34-летний Кузнецов был назначен народным комиссаром ВМФ СССР. Во время войны он входил в Ставку Верховного Главнокомандования, оперативно и энергично руководил флотом. За свои выдающиеся заслуги Н.Г. Кузнецов получил высшее воинское звание на флоте и стал Героем Советского Союза.В своей книге Н.Г. Кузнецов рассказывает о своем боевом пути начиная от Гражданской войны в Испании до окончательного разгрома гитлеровской Германии и поражения милитаристской Японии. Оборона Ханко, Либавы, Таллина, Одессы, Севастополя, Москвы, Ленинграда, Сталинграда, крупнейшие операции флотов на Севере, Балтике и Черном море – все это есть в книге легендарного советского адмирала. Кроме того, он вспоминает о своих встречах с высшими государственными, партийными и военными руководителями СССР, рассказывает о методах и стиле работы И.В. Сталина, Г.К. Жукова и многих других известных деятелей своего времени.Воспоминания впервые выходят в полном виде, ранее они никогда не издавались под одной обложкой.

Николай Герасимович Кузнецов

Биографии и Мемуары
100 великих гениев
100 великих гениев

Существует много определений гениальности. Например, Ньютон полагал, что гениальность – это терпение мысли, сосредоточенной в известном направлении. Гёте считал, что отличительная черта гениальности – умение духа распознать, что ему на пользу. Кант говорил, что гениальность – это талант изобретения того, чему нельзя научиться. То есть гению дано открыть нечто неведомое. Автор книги Р.К. Баландин попытался дать свое определение гениальности и составить свой рассказ о наиболее прославленных гениях человечества.Принцип классификации в книге простой – персоналии располагаются по роду занятий (особо выделены универсальные гении). Автор рассматривает достижения великих созидателей, прежде всего, в сфере религии, философии, искусства, литературы и науки, то есть в тех областях духа, где наиболее полно проявились их творческие способности. Раздел «Неведомый гений» призван показать, как много замечательных творцов остаются безымянными и как мало нам известно о них.

Рудольф Константинович Баландин

Биографии и Мемуары
100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии