– Другие предложения есть?
Конечно, есть. Весь класс тянет вверх ручонки, и нас поражают острота и индивидуальность видения и понимания того математического материала, с которым только что работали дети.
– Я назвал бы её циферблатной!..
– Бесконечной…
– Линейкой для цифр.
– Разве это цифры? – немедленно реагирует учитель. – Что такое цифры?
– Значки для обозначения чисел.
– Значит, как назвать?
– Линейкой для чисел.
– Многомерная линия.
– Числовая счётная линия.
– Прямочисленная линия.
– Она – рабочая линия.
– Числовая ось!..
– Что такое ось?
– Это линия, которая что-то на себе держит. Колёса, например. А здесь держит числа.
Учитель улыбается: молодцы!..
Ну как не восхититься образной детской мыслью, раскрепощённой поиском и радостью труда!
Найден не только точный термин, найдено определение красивое, разумное, ясное. Числовая ось держит числа!
В конце концов для него станет очевидным, что любой шаг на луче может соответствовать любому числу, которое он обозначит буквой, и тогда предыдущие и последующие числа будут отличаться на единицу в меньшую или большую сторону.
Но самое важное, что числовой ряд сразу возникает перед ним как бесконечный и поэтому обозначение и запись чисел становится проблемой, которую надо решать. Поиск ответа приведёт ребёнка к счёту группами. Например, десятками. А далее новая проблемная ситуация: как выйти за пределы 10 десятков. И перед глазами ребёнка раскрывается новая математическая реальность – система разрядов, в которой каждый последующий разряд содержит 10 единиц предыдущего.
Так всё более уточняется и обобщается исходное общее отношение между величинами, выражаемое числом, и способ его обнаружения детьми. И когда во втором классе наступает самый драматический момент всего начального курса обучения математике – переход к дробным числам, то для детей это не абсолютно новое явление, требующее пересмотра их прежних представлений о целых числах, а лишь дальнейшая конкретизация понятия числа.
Свойства дроби легко обнаруживаются детьми в уже привычной работе с разными мерками при одной и той же величине. Вначале они убеждаются, что любой остаток можно выразить числом при помощи новой единицы, меньшей, чем задана раньше. Но с двумя разными мерками работать неудобно, значит, надо соотнести их между собой, выразить остаток через старую мерку, которая берётся за целое.
При сравнении дробей с разными знаменателями детям становится очевидно, что увеличивая, например, знаменатель, мы берём меньшую часть старой единицы. Естественно, приходят они и к раскрытию основного свойства дроби: изменить мерку – это значит изменить и числитель и знаменатель в одно и то же число раз. Правило «если числитель и знаменатель изменяются в одно и то же число раз, величина дроби не изменяется» они, естественно, формулируют сами. Им нет необходимости искать его в учебнике. Правило – результат их мысли, действия, работы с понятием числа, которое всё более обретает черты подлинной научности.
Вот он, фундамент всего здания школьного математического образования, утверждает В. Давыдов. Целью такого образования является создание развёрнутой и полноценной концепции действительного числа, в основе которого лежит понятие о величине.
Мы убедились, как оригинально и последовательно решается первая задача: перевести житейские математические представления детей на рельсы научных понятий. Предмет математики – количественные отношения. Увести ребёнка от непосредственности восприятия, от конкретных тел в область математической абстракции, но чтобы он сохранил с ними живую, действительную связь, – вот задача, которую надо было решить в данном эксперименте.
Понятие числа, которое получает ребёнок, для него оказывается необходимым и сознательным. Это сознательное понятие. У него формируется новый «математический» взгляд на вещи – при необходимости он может посмотреть на них и с этой количественной точки зрения. Вещь многогранна, количественная сторона – лишь одна её сторона.
Это не утилитарный взгляд, а научный, объективный, тот уровень абстрактного мышления, который ориентируется на скрытые от прямого наблюдения зависимости. Но тогда как следствие такого обучения обнаруживается удивительная картина: способность осуществлять формальные операции, возникновение которой Ж. Пиаже относил к 11-12 годам, здесь формируется уже в семилетнем возрасте: дети рассуждают о сложных математических отношениях без предметов в чисто словесном плане.
Феномены Пиаже преодолеваются как бы сами собой в ходе принципиально другого способа обучения – теоретического. Упорный труд коллектива психологов Ф. Боданского, Г. Микулиной, Г. Минской, Л. Фридмана и других под руководством В. Давыдова доказал такую возможность. Правда, пока лишь в результате многолетнего психологического эксперимента.
Загадки хитрой фонемы
– Cкажи, Коля, зачем нужна математика?
Щуплый третьеклассник едва заметно пожимает плечами, на миг задумывается.
– Математика – не самая главная наука, – медленно говорит он, – хотя без неё ничего не может быть.