Читаем Дважды два = икс? полностью

– Другие предложения есть?

Конечно, есть. Весь класс тянет вверх ручонки, и нас поражают острота и индивидуальность видения и понимания того математического материала, с которым только что работали дети.

– Я назвал бы её циферблатной!..

– Бесконечной…

– Линейкой для цифр.

– Разве это цифры? – немедленно реагирует учитель. – Что такое цифры?

– Значки для обозначения чисел.

– Значит, как назвать?

– Линейкой для чисел.

– Многомерная линия.

– Числовая счётная линия.

– Прямочисленная линия.

– Она – рабочая линия.

– Числовая ось!..

– Что такое ось?

– Это линия, которая что-то на себе держит. Колёса, например. А здесь держит числа.

Учитель улыбается: молодцы!..

Ну как не восхититься образной детской мыслью, раскрепощённой поиском и радостью труда!

Найден не только точный термин, найдено определение красивое, разумное, ясное. Числовая ось держит числа!

В конце концов для него станет очевидным, что любой шаг на луче может соответствовать любому числу, которое он обозначит буквой, и тогда предыдущие и последующие числа будут отличаться на единицу в меньшую или большую сторону.

Но самое важное, что числовой ряд сразу возникает перед ним как бесконечный и поэтому обозначение и запись чисел становится проблемой, которую надо решать. Поиск ответа приведёт ребёнка к счёту группами. Например, десятками. А далее новая проблемная ситуация: как выйти за пределы 10 десятков. И перед глазами ребёнка раскрывается новая математическая реальность – система разрядов, в которой каждый последующий разряд содержит 10 единиц предыдущего.

Так всё более уточняется и обобщается исходное общее отношение между величинами, выражаемое числом, и способ его обнаружения детьми. И когда во втором классе наступает самый драматический момент всего начального курса обучения математике – переход к дробным числам, то для детей это не абсолютно новое явление, требующее пересмотра их прежних представлений о целых числах, а лишь дальнейшая конкретизация понятия числа.

Свойства дроби легко обнаруживаются детьми в уже привычной работе с разными мерками при одной и той же величине. Вначале они убеждаются, что любой остаток можно выразить числом при помощи новой единицы, меньшей, чем задана раньше. Но с двумя разными мерками работать неудобно, значит, надо соотнести их между собой, выразить остаток через старую мерку, которая берётся за целое.

При сравнении дробей с разными знаменателями детям становится очевидно, что увеличивая, например, знаменатель, мы берём меньшую часть старой единицы. Естественно, приходят они и к раскрытию основного свойства дроби: изменить мерку – это значит изменить и числитель и знаменатель в одно и то же число раз. Правило «если числитель и знаменатель изменяются в одно и то же число раз, величина дроби не изменяется» они, естественно, формулируют сами. Им нет необходимости искать его в учебнике. Правило – результат их мысли, действия, работы с понятием числа, которое всё более обретает черты подлинной научности.

Вот он, фундамент всего здания школьного математического образования, утверждает В. Давыдов. Целью такого образования является создание развёрнутой и полноценной концепции действительного числа, в основе которого лежит понятие о величине.

Мы убедились, как оригинально и последовательно решается первая задача: перевести житейские математические представления детей на рельсы научных понятий. Предмет математики – количественные отношения. Увести ребёнка от непосредственности восприятия, от конкретных тел в область математической абстракции, но чтобы он сохранил с ними живую, действительную связь, – вот задача, которую надо было решить в данном эксперименте.

Понятие числа, которое получает ребёнок, для него оказывается необходимым и сознательным. Это сознательное понятие. У него формируется новый «математический» взгляд на вещи – при необходимости он может посмотреть на них и с этой количественной точки зрения. Вещь многогранна, количественная сторона – лишь одна её сторона.

Это не утилитарный взгляд, а научный, объективный, тот уровень абстрактного мышления, который ориентируется на скрытые от прямого наблюдения зависимости. Но тогда как следствие такого обучения обнаруживается удивительная картина: способность осуществлять формальные операции, возникновение которой Ж. Пиаже относил к 11-12 годам, здесь формируется уже в семилетнем возрасте: дети рассуждают о сложных математических отношениях без предметов в чисто словесном плане.

Феномены Пиаже преодолеваются как бы сами собой в ходе принципиально другого способа обучения – теоретического. Упорный труд коллектива психологов Ф. Боданского, Г. Микулиной, Г. Минской, Л. Фридмана и других под руководством В. Давыдова доказал такую возможность. Правда, пока лишь в результате многолетнего психологического эксперимента.

<p>Загадки хитрой фонемы</p>

– Cкажи, Коля, зачем нужна математика?

Щуплый третьеклассник едва заметно пожимает плечами, на миг задумывается.

– Математика – не самая главная наука, – медленно говорит он, – хотя без неё ничего не может быть.

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука