Рассуждая сейчас о времени, вспомним пример, кажущийся очень простым, — один из парадоксов Зенона. Зенон относит свои парадоксы к пространству, мы применим их ко времени. Возьмем самый простой из всех — парадокс, или апорию, о движущемся. Движущийся предмет находится в одной точке стола и должен попасть в другую точку. Вначале ему необходимо покрыть половину пути, но перед тем — пересечь половину половины, а еще раньше — половину половины половины, и так до бесконечности. По Зенону, движущийся предмет никогда не переместится от одного края стола к другому. Наконец, мы можем обратиться к примеру из геометрии. В геометрии придумали точку. Считается, что точка не имеет никакой протяженности. Если же мы возьмем бесконечную последовательность точек, то это будет линия. Затем возьмем бесконечное количество линий и получим плоскость. Не знаю, до какой степени это доступно пониманию. Ведь если точка не имеет протяженности, непонятно, как может сумма хотя бы и бесконечного их числа дать нам протяженную линию. Говоря о линии, я не имею в виду прямую, соединяющую эту точку земли с луной. Я думаю, к примеру, о линии стола, до которого я дотрагиваюсь. В ней также бесконечное количество точек. Для всего этого было предложено объяснение.
Бертран Рассел объясняет это так. Существует финитное множество (натуральный ряд 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 и так до бесконечности). Рассмотрим теперь другую последовательность, протяженностью вдвое меньше первой. Она состоит из четных чисел. Тогда 1 соответствует 2, 2 — 4, 3–6… Теперь возьмем еще одну последовательность. Выберем произвольное число. Например, 365. Пусть теперь 1 соответствует 365, 2 — 365 в квадрате, 3 -365 в кубе. Мы получим несколько бесконечных последовательностей чисел. Так вот, в подобных трансфинитных множествах части не меньше целого. Насколько мне известно, эти идеи были приняты математиками, но я не понимаю, как им может поверить наше воображение.
Возьмем настоящее мгновение. Что такое настоящее мгновение? Это мгновение, в котором есть немного прошлого и немного будущего. Настоящее само по себе подобно финитной точке в геометрии. Настоящее само по себе не существует. Оно не является непосредственным восприятием нашего сознания.
Итак, у нас есть настоящее, которое постоянно оборачивается то прошлым, то будущим. Существует два взгляда на время. Согласно одному из них, который, я думаю, разделяем все мы, время — река, текущая к нам от своего непостижимого начала. Иначе смотрит на время английский метафизик Джеймс Брэдли. Брэдли говорит, что происходит как раз обратное, что время течет из будущего в настоящее, а тот момент, в котором будущее становится прошлым, и есть то, что мы называем настоящим. Мы можем выбирать между двумя метафорами. Мы можем поместить истоки реки времени в будущее или в прошлое.
Это все равно. В обоих случаях река будет течь. Но как разрешить проблему происхождения времени? Платон дал такой ответ: время берет начало в вечности. Однако это не значит, что вечность предшествует времени. Ведь сказать «предшествует» — значит сказать, что вечность относится ко времени.
Ошибочно также пола-гать вслед за Аристотелем, что время — мера движения, потому что движение осуществляется во времени и не может его объяснить.
Святой Августин однажды прекрасно сказал: "Non in tempore, sed cum tempore Deus creavit caela et terrain" ("He во времени создал Бог небеса и землю, но Он наделил их временем"). Первые стихи книги Бытия относятся не только к творению мира — творению морей, земли, мрака, света, — но и к началу времени. Раньше времени не было. Мир начал существовать, наделенный временем, и с тех пор все в нем происходит последовательно.
Не знаю, поможет ли нам идея трансфинитных множеств, которую я только что объяснил. Не знаю, свыкнется ли с этой идеей мое воображение, не знаю, свыкнется ли с этой идеей ваше воображение. С идеей множеств, части которых были бы равны целому. Говоря о последовательности натуральных чисел, мы понимаем, что количество четных чисел равно количеству нечетных, и оно бесконечно. Мы понимаем, что количество степеней 365 равно количеству натуральных чисел. Почему бы нам не применить эту идею и к двум моментам времени? Почему не применить ее к 7 и 4 минутам, 7 и 5 минутам? Трудно поверить, что между этими двумя числами располагается бесконечная трансфинитная последовательность мгновений.
Однако Бертран Рассел хочет, чтобы мы представляли это себе именно так.