«Вообразите, что вы впервые сталкиваетесь с новым видом математических понятий — например, рекурсивным вычитанием (т.е. делением). Когда детям преподают это абстрактное понятие, чаще всего их заставляют выучить набор правил обращения с действиями и числами. а потом эти правила снова и снова отрабатываются с разными числами в надежде, что такая практика поможет детям “увидеть” параллели с определенными физическими проявлениями. Мы часто описываем это как обучение математическим действиям путем механического заучивания (что в моих терминах называется индексальным обучением), а затем, когда действия уже могут совершаться почти бессознательно, мы надеемся, что дети осознают, как математика соотносится с процессами физического мира. На определенном этапе, если все идет как нужно, дети “понимают” общий абстрактный принцип, объединяющий эти связанные с символами и формулами операции. Так они могут реорганизовать то, что уже заучили механически, в соответствии с мнемоническими принципами более высокого уровня, касающимися комбинаторных возможностей и их абстрактной соотнесенности с манипулированием объектами. Такой шаг к абстракции для многих детей зачастую сложен. Однако вспомните, что та же трансформация на еще более высоком уровне абстракции требуется для понимания высшей математики. Дифференциалы связаны с рекурсивным делением, интегралы — с рекурсивным умножением, в каждом случае до бесконечности, т.е. до предельных величин (это возможно потому, что они зависят от сходящихся рядов, которые сами по себе плод умозаключений, а не прямого наблюдения). Эта способность видеть, что будет, если операцию повторять бесчисленное количество раз, и является ключевой для того, чтобы разрешить парадокс Зенона (который, кажется, невозможно осмыслить, когда он описан словами). Однако вдобавок к этой сложности используемый сейчас нами лейбницевский формализм сводит эту бесконечную рекурсию к одному символу (dx/dt) или знаку интеграла, поскольку никто не в состоянии писать такие операции бесконечно. Из-за этого манипулирование математическими символами еще больше теряет связь с соответствующими физическими величинами.
Поэтому смысл операции, выраженный математически, по сути содержит двойную кодировку. Да, у нас развиты мыслительные способности, позволяющие манипулировать с физическими объектами, и, разумеется, это сложно. Однако
К моему удивлению, мы все знаем, что математические уравнения — это по сути зашифрованные послания, для расшифровки которых нужен ключ. Однако мы почему-то изумляемся, что высшая математика так сложна для преподавания, и часто виним систему образования или преподавателей. Мне кажется, что с тем же успехом можно обвинять всю эволюцию» (личная переписка с автором, 11 июля 2013 г.).
Bilalič et al. 2008.
Geary 2011. См. также документальный фильм «Частная вселенная» (A Private Universe) по адресу http://www.learner.org/resources/series28.html?pop=yes&pid=9, который обусловил дальнейшее изучение природы ошибочного понимания естественно-научных концепций.
Алан Шёнфилд (Alan Schoenfeld 1992) замечает, что более сотни имеющихся в его распоряжении видеороликов, на которых старшеклассники и студенты решают незнакомые задачи, свидетельствуют: примерно в 60% случаев решения основываются на подходе «прочти, быстро выбери способ и не отступайся от него ни под каким видом». Это характерный пример того, как работает сфокусированное мышление.
Голдакр, 2010.
Gerardi et al. 2013.
Различия между полушариями головного мозга могут быть важны, однако, как уже упоминалось, все утверждения в этой области нужно принимать с осторожностью. Лучше всего сказал об этом Норман Кук: «Многие идеи, высказанные в ходе дебатов 1970-х годов, ощутимо выходили за пределы фактических знаний: разницей между полушариями объяснялись сразу все загадки человеческой психологии, включая подсознание, природу творчества и парапсихологические феномены, — однако неизбежное отклонение маятника в обратную сторону было также чрезмерным» (Cook 2002: 9).
Demaree et al. 2005; Gainotti 2012.
McGilchrist 2010; Mihov et al. 2010.
Nielsen et al. 2013.
Другой вариант задачи см. у де Боно (де Боно, 2012) — это дало толчок к созданию приведенной здесь задачи. Классическая книга де Боно содержит огромное количество таких задач и может служить отличным чтением.
Immordino-Yang et al. 2012.