Читаем Достичь небес полностью

Райты понимали, что такой подход неверен, потому что хорошо разбирались в велосипедах. Они знали, что чем быстрее едешь на велосипеде, тем более стабильным становится его движение, но стоит остановиться, и сразу же упадешь. Велосипеды неустойчивы, но в движении они очень чутко отзываются на малейшие движения седока. Прорыв Райтов заключался в том, что их аэроплан, подобно велосипеду, не должен был сохранять стабильность в полете сам по себе; он должен был чутко отзываться на движения пилота.

Подобно Отто Лилиенталю и множеству других первопроходцев до них, братья часами наблюдали за полетом птиц. Один из выводов, сделанных ими в результате этих наблюдений, оказался поистине ключом к успеху. Они обратили внимание на то, как птица канюк справляется с неожиданно налетевшим порывом ветра, изгибая кончики крыльев. Чтобы сохранить устойчивость в полете, птица поднимала кончик одного крыла и опускала кончик второго. Легенда гласит, что однажды в июле 1899 г. Уилбур вертел в руках пустую коробку из-под велосипедных камер и вдруг заметил: если немного повернуть края картонки, один из углов поднимается вверх, а другой опускается. Представив картонку летящей в потоке воздуха, Уилбур понял, что таким образом можно наклонять ее в полете, в точности как это делает канюк. Перед его мысленным взором была уже не коробка, а крыло; а в руках он держал первую в мире управляющую плоскость аэроплана!

Этот момент нуждается в некотором разъяснении, как это обычно и бывает с моментами прозрения. Для начала мне, пожалуй, стоит объяснить, как работает крыло в горизонтальном полете, каким образом оно удерживает тело — будь то самолет или птица — в воздухе.

Надуйте и плотно завяжите воздушный шарик. А теперь попробуйте сжать его. Воздух внутри сопротивляется вашим усилиям. Чем больше вы сжимаете шарик, тем сильнее его приходится сжимать. Дело в том, что вы повышаете давление воздуха внутри шарика. До сих пор все очевидно — и вам даже простительно думать, что при подобном сжатии жидкости давление всегда увеличивается. Но из этого правила есть одно очень серьезное исключение, которое описал в 1738 г. голландский математик Даниил Бернулли, и именно благодаря этому исключению птицы — и самолеты — умудряются держаться в воздухе.

Исключение Бернулли имеет отношение к текучей среде, и проще всего продемонстрировать его не на воздухе, а на воде. (Поясним: хотя вода намного плотнее воздуха, и то и другое — текучие среды: и воздух, и вода подчиняются одним и тем же физическим законам.) Итак, включите на даче воду и возьмите шланг для полива. Теперь выберите место на шланге и начинайте потихоньку сжимать. На этот раз: чем сильнее сдавлен шланг, тем проще сжимать его дальше!

Вот что здесь происходит. Нечто — в данном случае насос, поддерживающий давление в вашем шланге, — придает воде энергию, необходимую для прохода через шланг. Часть этой энергии тратится на движение вперед, а часть толкает воду на стенки шланга и создает давление. (Если проткнуть шланг, вода начнет фонтанировать через отверстие.) Расход воды постоянен: в любом месте шланга через его поперечное сечение в единицу времени пытается пройти равное количество воды. Если вы начинаете сжимать шланг, воде приходится двигаться быстрее, чтобы миновать узкое место. На движение вперед используется больше энергии воды — а значит, на расталкивание стенок шланга ее остается меньше. Сожмите шланг, и давление воды на его стенки уменьшится.

Предлагаю не вдаваться в дальнейшие подробности, а сразу рассмотреть сечение крыла. (Это может быть крыло самолета или птицы — неважно: они оба работают одинаково.) Воздух, проходящий на диаграмме слева направо, натыкается на крыло. Крыло сжимает воздух, который проходит над ним. Воздух движется быстрее, чтобы скомпенсировать сжатие, и давление на верхнюю поверхность крыла падает. Самолеты и птиц засасывает в воздух.

Крыло во время движения как бы подсасывает груз — с некоторой помощью Даниила Бернулли и его принципа, впервые опубликованного в 1738 г.

Ну и хватит о горизонтальном полете в безветренный день. Что происходит, если дует порывистый ветер? Что, если воздух над левым крылом дует сильнее, чем над правым? Как мы остаемся на ровном киле в условиях реального, непредсказуемого, постоянно движущегося воздуха? Понять это поможет картонка Уилбура.

Перейти на страницу:

Похожие книги

100 способов избежать аварии. Спецкурс для водителей категории В
100 способов избежать аварии. Спецкурс для водителей категории В

Сколько раз, сидя перед экраном телевизора, вы вздрагивали, услышав визг тормозов? К сожалению, со стороны пассажирского сиденья он звучит еще страшнее. Все мы прекрасно знаем, что, садясь за руль, мы несем ответственность не только за себя и своих спутников, но и за всех участников дорожного движения.Так как же вести себя, если вы понимаете, что ситуация вышла из-под контроля и велика вероятность аварии?Александр Каминский, изучив часто случающиеся аварии, на страницах своей книги поделился опытом и секретами, как их избежать, а также подробно описал экстренные действия во время нештатных ситуаций.Книга написана живым и доступным языком и предназначена для широкого круга автовладельцев с различным стажем вождения. Желаем вам приятного чтения и надеемся, что чужой опыт, описанный в этой интересной книге, никогда не станет вашим!

Александр Юрьевич Каминский

Автомобили и ПДД / Техника