Один из аргументов антиэволюционистов состоит в том, что разное число хромосом у разных видов якобы доказывает невозможность эволюционного превращения одного вида в другой, потому что виды с разным числом хромосом не могут скрещиваться, и мутант, у которого число хромосом изменилось, не оставит потомства, потому что не найдет себе брачного партнера с такой же мутацией. Ошибочность этого довода доказывается тем, что различия в числе хромосом на самом деле не являются непреодолимым препятствием для скрещивания и производства плодовитого потомства. Известны виды организмов (растений, насекомых, млекопитающих и др.) у которых наблюдается внутривидовая изменчивость по числу хромосом, причем особи с разным числом хромосом скрещиваются и дают нормальное плодовитое потомство. Один из примеров — дикие кабаны, у которых имеется значительный хромосомный полиморфизм (Nombela et al., 1990)
Весьма интересны недавние открытия, показывающие роль дупликации генов в формировании эволюционных новшеств:
1) Многофункциональные гены — основа для эволюционных новшеств
2) Геном ланцетника помог раскрыть секрет эволюционного успеха позвоночных
3) Обоняние и цветное зрение в эволюции млекопитающих развивались в противофазе
4) Прослежена эволюционная история одного из человеческих генов
5) Утрата полового размножения способствует появлению новых генов
6) Удвоение генов может приводить к видообразованию
Появление эволюционных новшеств («новой сложности») путем удвоения гена и последующего разделения функций между его копиями опровергает утверждения антиэволюционистов о том, что усложнение живых систем требует вмешательства разумной силы.
Также наблюдается изменение морфологии организмов и функциональные изменения — различные адаптации, появление способности усваивать новый вид пищи (в том числе — нейлон и пентахлорфенол, производство которых началось в 30-х годах прошлого века) и т. д… Кроме того, были обнаружены всевозможные промежуточные этапы видообразования, что свидетельствует о плавном характере возникновения новых видов.
Долгосрочный эволюционный эксперимент
Группе биологов из Университета штата Мичиган под руководством Ричарда Ленски удалось смоделировать в лаборатории процесс эволюции живых организмов на примере бактерий кишечной палочки
В силу скорости размножения смена поколений кишечной палочки происходит крайне быстро, поэтому ученые надеялись, что длительное наблюдение продемонстрирует механизмы эволюции в действии. На первом этапе эксперимента, в 1988 году, 12 колоний бактерий были помещены в идентичные условия: изолированную питательную среду, в которой присутствовал только один источник питательных веществ — глюкоза. Кроме этого, в среде был цитрат, который в присутствии кислорода эти бактерии не могут использовать в качестве источника пищи. За прошедшие двадцать лет сменилось более 44 тысяч поколений бактерий.
Ученые наблюдали за изменениями, происходящими с бактериями. Большинство из них носили одинаковый характер во всех популяциях — например, размер бактерий увеличивался, хотя и разными темпами. Однако где-то между поколениями номер 31 тысяча и 32 тысячи в одной из популяций произошли кардинальные изменения, не наблюдавшиеся в остальных. Бактерии стали способны усваивать цитрат.