Эйлер интересовался всем и писал статьи почти по всем вопросам. Многие из них сложно отнести к той или иной области науки, известной в то время: к чему относится, например, задача о возможном маршруте по мостам Кенигсберга? Другие же, напротив, прекрасно вписывались в мир того времени, например задача о выплате пенсий, но не были первоочередными проблемами. Краткий экскурс по этим трудноклассифицируемым сочинениям даст более глубокое представление о необыкновенном разнообразии наследия Эйлера.
Вклад Эйлера в практическое инженерное дело обычно принижается, отчасти из-за невысокого мнения о нем Фридриха II, который считал очевидным, что все проекты, реализованные его подданными, будь то генералы, садовники или ученые, должны прекрасно работать, ведь за это он им и платил. Инженеры Его Величества — а Эйлер был их начальником — не были исключением. Если, например, из фонтанов в садах императора вдруг не била струя, то, по мнению Фридриха, это означало, что его инженеры и конструкторы никуда не годятся. Ошибки в расчетах давления воды не прощались.
Несмотря на такое отношение, Эйлер много занимался задачами практической инженерии. Около 1744 года (правда, эта работа была опубликована только в 1757-м) он применил вариационное исчисление к рассчету нагрузки от предметов на пилястрах, которые их поддерживают, — на профессиональном языке это называется критической нагрузкой, простым вариантом деформации.
Представим себе колонну, как на следующей странице, на которую давит осевая концентрическая сила, q, то есть груз, давящий на центр тяжести ее поперечной секции. Эйлер нашел формулу
F = π2EI/(KL)2,
которая описывает эту нестабильность, где F — сила, или осевой груз, Е — модуль упругости, I — момент инерции площади, L — длина между точками опоры колонны, а — эмпирический фактор, зависящий от условий поддержки конца перекладины или колонны, испытывающей деформацию. Произведение KL определяет их действительную длину.
В 1757 году Эйлер опубликовал статью Principes generaux du mouvement des fluides ("Общие принципы движения жидкостей").
В ней впервые появляются уравнения для механики жидкостей, описывающие движение жидкости, которую нельзя сжать и у которой нет вязкости.
Сегодня такую жидкость назвали бы идеальной. Мы же рассмотрим не саму идеальную жидкость, а уравнения Эйлера, записанные в современном виде. Лаплас (1749-1827) добавил к этим уравнениям важную деталь — адиабатическую составляющую (то есть предположил, что количество тепла в системе неизменно). На современном тензорном языке уравнения выглядят так:
Теорему Бернулли для гидродинамики можно вывести, проинтегрировав уравнения Эйлера. Таким образом, нет сомнений, что они имеют огромное значение, ведь из них выводится принцип полета крылатого тела, более тяжелого, чем воздух. В прошлом уравнения Эйлера применялись в изучении самых разных явлений — большого красного пятна на Юпитере, кровообращения, аэродинамики автомобилей — и продолжают использоваться сейчас. В эссе 1756 года Эйлер подробнейшим образом изучил турбины, приводимые в движение жидкостью, и это исследование до сих пор остается непревзойденным.
Уравнения Эйлера являются дифференциальными нелинейными уравнениями, с которыми не всегда легко работать. Изобретение компьютеров с их огромными вычислительными способностями дало физикам возможность находить их приближенные числовые решения. Вероятно, получить точное и элегантное решение невозможно, зато можно добиться хорошего приблизительного результата.