Читаем До предела чисел. Эйлер. Математический анализ полностью

После изучения гамма- и бета-функций Эйлер занялся теорией чисел, вдруг резко изменив направление своей научной работы, что было для него весьма характерным. В частности, его привлек вопрос, который за век до того оставил нерешенным французский ученый Пьер Ферма (1601-1665).

МАТЬ ВСЕХ ФУНКЦИЙ

Дзета-функция — королева всех математических функций, она привлекает наибольшее внимание специалистов, и ей посвящено наибольшее количество сайтов в интернете. Ее название происходит от греческой буквы ξ (дзета), и в первый раз ее использовал Эйлер в решении так называемой Базельской задачи, принесшей ему известность. Эйлер доказал, что бесконечная сумма обратных квадратов равна π2/6:

1 + 1/22 + 1/32 + 1/42 + ... + π2/6,

а затем обобщил этот результат, рассмотрев подробнее следующую функцию:

ξ(x) = 1 + 1/2x + 1/3x + 1/4x + ...

Она может принимать любое значение х из области R вещественных чисел. Эйлер вычислил множество значений дзета-функции, но прямой метод нахождения этих бесконечных сумм неизвестен и по сей день. Сам Эйлер открыл способ приведения бесконечной суммы £ к конечному результату, получив, благодаря легкости обращения с алгебраическими формулами, выражение

ξ(x) = Σn=11/ns = ∏k=1∞1/(1 - 1/pks),

где рk пересекают исключительно область простых чисел. Так обнаружилась неожиданная связь дзета-функций с этими числами. При помощи инструментов анализа дзета-функцию можно перенести в комплексную область, если брать значения s не из области R (то есть вещественных чисел), а из комплексной области С. Впервые дзета-функцию до этой области расширил и изучил великий немецкий математик Бернхард Риман (1826-1866). Сегодня эта функция известна как дзета-функция Римана, и с ней связана так называемая гипотеза, или проблема Римана: невероятное предположение, которое до сих пор не было доказано и считается одной из главных нерешенных задач современной математики. Гипотеза Римана входит в число семи проблем тысячелетия, за решение каждой из которых Институт Клэя в качестве приза выплатит один миллион долларов.

Связь между Эйлером и Ферма была очень тесной. Если мы проследим научные изыскания Эйлера в теории чисел, то увидим, что в основном он пытался решить одну за другой оставленные без ответа задачи Ферма. Это было непросто, поскольку французский ученый редко записывал свои вопросы отдельно, а обычно делал комментарии прямо в книгах, которые читал и анализировал. Он любил бросать вызов своим коллегам, задавая им задачи, которые сам уже решил.

Один из самых интересных вопросов из наследия Ферма — числа, которые были названы его именем, числа Ферма. Они обозначаются буквой F и определяются формулой

Fn = 22n +1.

При n = 0,1,2,3,4 получим

F0 = 220 + 1 = 21 + 1 = 3

F1 = 221 +1 = 22 + 1 = 4 + 1 = 5

F2 = 222 + 1 = 24 + 1 = 16 + 1 = 17

F3 = 223 + 1 = 25 + 1 = 256 + 1 = 257

F4 = 224 + 1 = 216 + 1 = 65 536 + 1 = 65 637.

Все они являются простыми числами. Следующее число Ферма выглядит так:

F5 = 225 + 1 = 232 +1 = 4 294 967 296 + 1 = 4 294 967 297.

Перейти на страницу:

Похожие книги