С исторической точки зрения эти аналитические уравнения уже были рассмотрены в 1752 году Д’Аламбером и Эйлером, ис- пользовавшими их в разных областях, например в гидродинамике. Уже в 1777 году эти уравнения появляются среди других аналитических выражений ученого, хотя они были опубликованы только после его смерти. Они постулируют равенство частных производных следующим образом: предположим, что функцию f(x + iy) комплексной переменной можно разделить на действительную и мнимую части:
f(x + yi) = u (х,у) + iv (х,у)
и что u и v можно продифференцировать как функции двух переменных в действительной области R. Следовательно, их частные производные удовлетворяют условиям
u/x = v/y
u/x = v/x
И наоборот, если u и v можно продифференцировать как действительные функции и при этом выполняются предыдущие равенства для производных, то f — дифференцируемая функция и f = u + iv.
Эти уравнения встречаются уже на первых страницах современного учебника по комплексному анализу и знакомы всем студентам, изучающим физику и инженерное дело.
Эйлер нашел время для изучения вопросов статистики и вероятностей. И хотя его исследования в этой области были не слишком обширны, о них стоит упомянуть. Иногда ученый говорил об этих работах в переписке с королем Фридрихом II. Некоторые изыскания ученого касаются азартных игр и пари — в то время эта область считалась научной. Действительно, в них часто решались задачи, впоследствии приобретавшие большое научное значение. Как и другие выдающиеся математики, например Иоганн Генрих Ламберт (1728-1777) или Пьер-Симон Лаплас, Эйлер изучал карточную игру treize (413"), известную также под названием "встреча" (или "совпадения"). Затем он углубился в лотереи, возникшие как раз в это время, и в страхование жизни, а также в статистику жизни и смерти. Пенсия и ежегодные взносы, которые необходимо выплачивать для ее получения, высчитываются на основе этой статистики, поскольку их объем зависит от большей или меньшей вероятности смерти человека.