Теперь нам придется вернуться к радиоактивному излучению. Выше говорилось об альфа-лучах. Они представляют собой поток альфа-частиц, каждая из которых состоит из двух протонов и двух нейтронов. Таким образом, альфа-частица — это ядро гелия. Мы писали и о других лучах, испускаемых радиоактивными телами, — бета-лучах. Бета-лучи — это поток электронов. Радиоактивное излучение происходит вследствие распада атомных ядер. Альфа-распад (т. е. распад, в результате которого возникают альфа-лучи) означает, что из ядра данного элемента вылетает альфа-частица, т. е. ядро гелия. Иными словами, при альфа-распаде ядро теряет четыре частицы: два протона и два нейтрона. Потеря четырех частиц означает уменьшение атомного веса на четыре единицы. При бета-распаде, т. е. при вылете из атомного ядра электрона, образуется новое ядро почти с тем же атомным весом (масса электрона очень мала), но при этом заряд ядра становится на единицу больше. Дело в том, что при бета-распаде один из нейтронов превращается в протон плюс электрон; электрон-то и вылетает из ядра, а образовавшийся вместо нейтрона протон увеличивает заряд ядра на единицу. Поэтому после бета-распада каждый элемент оказывается уже в другой клетке менделеевской таблицы, так как его порядковое число (равное положительному заряду атома) становится на единицу больше. Иначе говоря, элемент переходит направо, в следующую клетку менделеевской таблицы. Напротив, при альфа-распаде атомное ядро теряет два нейтрона и два протона, иначе говоря — два положительных заряда, поэтому число протонов и вместе с тем заряд ядра уменьшается на две единицы, следовательно, элемент передвигается на две клетки налево, приближаясь к началу периодической таблицы. Если в ядро влетает нейтрон — частица, электрически незаряженная, то заряд ядра не меняется, а масса ядра увеличивается примерно на единицу атомного веса. Таким образом, элемент остается в той же клетке периодической системы и его порядковый номер не изменяется. Однако, поскольку число нейтронов и, следовательно, масса ядра увеличивается при этом на единицу, перед нами оказывается новый, более тяжелый изотоп того же элемента.
Нужно сказать, что попадания протонов в ядра могут происходить лишь при определенных условиях: протон заряжен положительно, так же как и ядро атома, поэтому ядро и протон отталкиваются друг от друга и протон может попасть в ядро лишь при движении с большой скоростью. Поэтому бомбардировка атомного ядра протонами требует, чтобы летящим протонам была сообщена очень большая энергия.
Бомбардировка атомных ядер протонами, нейтронами или альфа-частицами широко применялась в начале 30-х годов нашего века и привела к ряду важных в практическом и теоретическом отношении открытий. Значительные успехи были достигнуты после того, как для бомбардировки ядер начали применять нейтроны. Нейтроны не имеют электрического заряда, они не испытывают отталкивания со стороны атомного ядра и легче попадают в цель.
В самом конце 30-х годов нашего века с помощью нейтронной бомбардировки были получены результаты, все значение которых можно было оценить только впоследствии. Благодаря работам немецких ученых О. Гана и Ф. Штрассмана, а также австрийского физика Лизы Мейтнер выяснилось, что при бомбардировке нейтронами ядер урана ядро раскалывается на приблизительно равные части. Эти части ядер, имея положительный заряд, отталкиваются друг от друга с громадной силой. Поэтому деление ядер урана — источник чрезвычайно большого количества энергии. Ее можно было получить только в том случае, если реакция распада, раз начавшись, продолжалась бы сама собой, иначе процесс для своего продолжения требовал бы затраты большой энергии со стороны.
Подобная цепная, непрерывная и самоускоряющаяся, реакция деления атомных ядер урана была получена главным образом благодаря работам Фредерика Жолио-Кюри, который в 1939 году одним из первых открыл, что при раскалывании (делении) ядра урана (как впоследствии выяснилось, урана 235) выделяются свободные нейтроны, которые могут попасть в соседние ядра урана и т. д. и вызвать непрерывную и быстро ускоряющуюся реакцию. Деление урана будет продолжаться в быстро растущих масштабах. Когда речь идет о делении атомного ядра урана, для начала цепной реакции даже и не нужен внешний источник нейтронов. Советские ученые Г. Н. Флеров и К. А. Петржак открыли важное свойство урана. Оказывается, ядра урана время от времени самопроизвольно делятся. Это происходит крайне редко, но этого достаточно, чтобы в куске урана началась цепная реакция деления.