Читаем DirectX 8. Начинаем работу с DirectX Graphics полностью

float __fastcall ulsqrt(float x) {

 return x * ulrsqrt(x);

}

3 Нормализация векторов. Обычно делают неправильно, но сначала код:

//Обычно делают так:

void normaliseNormalise(Vector *v) {

 float L, L_squared, one_over_L;

 L_squared = (v->x * v->x) + (v->y * v->y) + (v->z * v->z);

 L = sqrt(L_squared);

 one_over_L = 1.0 / L;

 v->x = v->x * one_over_L;

 v->y = v->y * one_over_L;

 v->z = v->z * one_over_L;

}

// А можно так:

#define ONE_AS_INTEGER ((DWORD)(0x3F800000))

float __fastcall InvSqrt(const float & x) {

 DWORD   tmp = ((ONE_AS_INTEGER << 1) + ONE_AS_INTEGER - *(DWORD*)&x) >> 1;

 float y = *(float*)&tmp

 return y * (1.47f - 0.47f * x * y * y);

}

void Normalise(Vector *v) {

 float L_squared, one_over_L;

 L_squared = (v->x * v->x) + (v->y * v->y) + (v->z * v->z);

 one_over_L = InvSqrt(L_squared);

 v->x = v->x * one_over_L;

 v->y = v->y * one_over_L;

 v->z = v->z * one_over_L;

}

По-моему комментарии излишни :).

4 Разворачивание циклов

Обычно циклы разворачиваются. Наша цель максимально эффективно использовать кэш процессора, поэтому слишком глубокого разворачивания не нужно, достаточно повторений в цикле.

Для этого используем макросы, но оставляем возможность переключится на функции и не развернутые циклы для отладки (Отладка развернутых циклов сложна и неинформативна).

Опасайтесь разбухания кода!

Измеряйте производительность кода постоянно, причем желательно вести базу данных, в которой будут указываться не только изменения в коде, но и изменения в производительности. Особенно такие базы полезны при работе с несколькими программистами графического ядра приложения.

1. Оптимизация рендеринга

Благодатная тема для описания, существует огромное количество способов сделать неправильно и один способ сделать правильно (Это заявление не относится к операционной системе Windows, для нее правильнее другое: Существует огромное количество способов сделать правильно, но они устарели и их лучше не использовать, а самый лучший способ — это как раз тот, в который мы недавно добавили большое количество NOP'ов и он работает как раз так, чтобы чуть-чуть тормозить на средней системе :)).

DirectX 8 и, в частности, Direct3D8 - это безусловно самая лучшая разработка Корпорации (ведь мы уже смело можем ТАК ее называть).

Итак, следуйте следующим указаниям:

1. Не используйте "тяжелые" функции в цикле рендеринга. Всегда функции

ValidateDevice, CreateVB, CreateIB, DestroyVB, Optimize, Clone, CreateStateBlock, AssembleVertexShader

помещайте в загрузку сцены и НИКОГДА в цикл рендеринга приложения. Создание буфера вершин может занять до 100 ms!

2. Использование DrawPrimitiveUP является ошибкой, вызывает задержки в работе процессора и всегда вызывает дополнительное копирование вершин.

3. Не позволяйте художникам контролировать ваш код. Если вам необходимо рисовать по 200+ вершин за проход, то геометрия должна удовлетворять этому требованию. Позволите себе рисовать по 2 вершины за вызов — и вы ТРУП :(.

4. Сортируйте по текстурам и по шейдерам. Если сложно сортировать по обоим параметрам, используйте кэширование. Создаем большую текстуру 4K×4K, в нее копируем текстуры, используемые в сцене, подправляем текстурные координаты геометрии и рисуем большой кусок с одной текстурой сортированный по шейдерам. Либо готовим геометрию таким образом, чтобы это кэширование не требовалось.

5. Стараемся использовать как можно меньшее количество буферов вершин. Смена буфера очень "тяжелая" операция и дорого нам стоит. Поэтому

6. Загружаем модели в сцене в минимальное количество буферов.

7. Используем минимальное количество разновидностей FVF, если возможно — то один общий FVF (Максимального размера).

8. Доступ к буферу асинхронный, поэтому мы можем одновременно рисовать модель из одной части буфера и изменять значения в другой.

9. Всегда считайте данные в видеокарте, как доступные только для записи.

10. Если вам необходимо восстанавливать состояние буфера, храните две копии.

11. Если вы обновляете данные в буфере каждый фрейм, используйте динамические буферы вершин.

12. Старайтесь вместо динамического буфера использовать статический буфер, анимированный шейдером.

13. Разделяйте буфер на потоки, если вам необходимо обновлять только часть информации, и.

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT