Читаем Диалоги (июнь 2003 г.) полностью

Б.М. Решаем… всё-таки можно даже сказать, что решили. Здесь мы касаемся темы, о которой ещё сегодня не говорили. Это не нейросети, их мы очень мало применяем здесь. А это так называемые генетические алгоритмы. В научной литературе им посвящено гораздо меньше публикаций, чем нейросетям. Мне кажется – незаслуженно. Потому что и то, и другое – это альтернативный подход к эвристическому программированию. Чистые математики объясняют это так, что нейросети – это математически объяснимо, может быть математически доказано, а генетические алгоритмы – якобы нет. И приводят ссылки на работу Колмогорова-Арнольда, работу 50-х годов – но мне кажется, что для практического программирования эта работа представляет весьма малый интерес. И то, и другое, это разные альтернативы, разные подходы к эвристическому программированию. Наша «функция риска» – это тоже подход. Просто надо всё применять в разумных примерах, в разумных количествах.

Вот здесь возникает именно задача самообучения набора коэффициентов, среди которых, кроме всего прочего, коэффициенты самообучения функций риска, не только коэффициенты для оценки позиций, но и коэффициенты функций риска. Мне, по крайней мере, неизвестно хороших публикаций (чуть ли вообще никаких) про самообучение этих наборов коэффициентов. Есть, либо есть стандартный подход генетических алгоритмов, в котором тоже много не совсем правильного, либо просто, как в упомянутых книжках Вельского с компанией, сказано: «Было произведено самообучение». Было, хорошо было произведено, раз программа хорошая, раз, отставая в 70-х годах от американцев по технике, на той же самой технике «Каисса», победила. Значит, было хорошо самообучение произведено, но как оно было произведено, никакой теории по этому поводу не было.

А.Г. Получается, что в вашем случае, при ваших алгоритмах решения, самообучение важнее, чем в случае программ, которые строятся на нейросетях. Или я ошибаюсь?

А.Р. В нейросетях как раз всё построено на самообучении…

Б.М. Но там своё самообучение…

А.Р. Нейросеть нужно настроить, чтобы она играла. Это производится за счёт самообучения, иначе это просто будет…

А.Г. Я неправильно задал вопрос. Что вам важнее – выбрать метод обучения программы или… Грубо говоря, у вас ребёнок непослушный, непредсказуемый…

А.Р. Скажем так, это вопрос важный – вопрос выбора метода самообучения. Важный в чём? Нужно не просто чтобы программа сама с собой играла, а чтобы было много экземпляров такой программы, каждый немного по-своему настроенный. И вот эта вся толпа, играя друг с другом, устраивает турниры, выбирает победителя. Необходимо найти критерий, по которому решается, кто из них победитель. Собственно, кажется, это и есть швейцарская система?

Б.М. Да, в общем-то, это что-то похожее на швейцарскую систему. Потом это было немножко изменено, но это не настолько всё-таки важно, чтобы так подробно об этом говорить.

Здесь лучше, наверное, вспомнить ещё одну вещь, которая только начала встраиваться в программу. В классической теории Адельсона-Вельского программа, когда думает, за противника думает так же, как за себя. То есть на место противника ставит саму себя. Ещё один приём, который мы применяли – ставить на место противника не себя, а нечто другое, нечто более сложное, нечто более сильное. Потому что у нас-то есть действительно толпа (это такой жаргонный термин – толпа игроков), толпа объектов для самообучения. Это применяется, ещё раз скажу, и в других задачах дискретной оптимизации. И можно всегда взять того, который лидирует, в качестве условного противника, то есть программа, играя, в качестве условного противника берёт лидера.

Что ещё можно? Ещё только начаты работы в том направлении, чтобы программа пыталась, пока противник думает, начать думать за противника и старалась подобрать к противнику свои критерии работы. То есть пыталась представить саму себя на месте противника, и если у неё это получается, она на месте этого виртуального противника подставляет саму себя со своими коэффициентами. Вот это была бы очень интересная тема. Но она, как я уже сказал, только начата, и сказать, насколько она реально применяется в программах, я вам пока не могу.

А.Г. Ну что ж, мне осталось вам пожелать удачи в 2004 году. И если победите, то приходите рассказать о том, как это было.

Б.М. Спасибо!

<p>Гравитационные волны</p>4.06.03(хр.00:50:40)

Участники:

Владимир Борисович Брагинский – доктор физико-математических наук, член-корреспондент РАН

Михаил Васильевич Сажин – доктор физико-математических наук

Александр Гордон: …Теории относительности Эйнштейна. Но до сих пор они не зарегистрированными остаются, таким теоретическим предположением.

Владимир Брагинский: Нет.

А.Г. Не зарегистрированным?

Михаил Сажин: Совершенно верно.

В.Б. Даже уже Нобелевскую премию дали.

А.Г. За что?

Перейти на страницу:

Похожие книги

Иная жизнь
Иная жизнь

Эта книга — откровения известного исследователя, академика, отдавшего себя разгадке самой большой тайны современности — НЛО, известной в простонародье как «летающие тарелки». Пройдя через годы поисков, заблуждений, озарений, пробившись через частокол унижений и карательных мер, переболев наивными представлениями о прилетах гипотетических инопланетян, автор приходит к неожиданному результату: человечество издавна существует, контролируется и эксплуатируется многоликой надгуманоидной формой жизни.В повествовании детективный сюжет (похищение людей, абсурдные встречи с пришельцами и т. п.) перемежается с репортерскими зарисовками, научно-популярными рассуждениями и даже стихами автора.

Владимир Ажажа , Владимир Георгиевич Ажажа

Альтернативные науки и научные теории / Прочая научная литература / Образование и наука
100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука