Юрий Ершов: Дело в том, что доказательность, она в существе самой математики сидит. И поэтому, как и всякая наука, как и всякая технология, математика совершенствует своё основное средство, и поэтому я не могу сказать, что просто есть проблема с доказательностью в математике, а есть другая проблема. Математика как бы объявила себя эталоном доказательности, эталоном образца, эталоном точности и раз уж объявила, то надо этому и следовать. Поэтому вопрос состоит в следующем: то, что считалось доказанным в 17-м веке, то не принималось учёными 18-го века и так далее. Но на рубеже 19 и 20 века произошёл некоторый кардинальный переворот.
Дело в том, что математики привыкли работать с совершенно точно определёнными понятиями, хотя понятие точности тоже всё время меняется и уточняется. Так вот, доказательность лежит в существе этой науки. А что такое доказательство как математическое понятие?
Первые точные определения этому понятию были даны только на рубеже 19-20 века в связи с созданием математической логики. Дело в том, что логика в своё время возникла как прикладной раздел ораторского искусства, риторики. Когда говорят о логике Аристотеля, то надо, конечно, понимать – это была не совсем та логика, которой пользуются математики. Математики в своей деятельности, в финальной деятельности, когда они на суд сообщества своего и более широкой аудитории выносят доказательство теорем, то они, безусловно, пользуются логикой и стремятся к тому, чтобы доказательства были точными, понятными, доступными. Так вот, в каждой науке есть периоды – период накопления фактов и период критический, когда нужно посмотреть, как говорится, всё ли в порядке, и посмотреть на основы, привести здание, которое строится, в более-менее надлежащий порядок, математика не представляет собой исключение из этого. Один из таких периодов перехода от накопления фактов к упорядочению был в конце 19-20 века, когда была сделана попытка вполне развитый математический анализ, алгебру, перевести на более строгую основу.
Тогда появилось понятие «множество», очень такое абстрактное понятие, введение которого в школу привело к достаточно серьёзным отрицательным последствиям. Но для математики это было очень важно. Понятие множества оказалось тем единым понятием, в терминах которого можно было все остальные математические понятия сформулировать. И строилось то, что потом Пуанкаре назвал раем для математики, – «теория множеств». И за проникновение в рай, оказалось, нужно платить. Оказалось, что в тех, казалось бы, совсем новых основаниях построения математики как единого стройного здания обнаружились противоречия. И это был кризис в основаниях математики. Все серьёзные математики того времени: Анри Пуанкаре, Давид Гильберт, Герман Вейль и другие, были озабочены тем, чтобы как-то преодолеть эти противоречия.
И в качестве противоядия, в качестве одного из средств, обеспечивающих беспроблемное развитие математики, явилось создание математической логики, которая позволила впервые дать точные математические определения, а следовательно, и сделать объектом исследования такие понятия, которые в математике использовались, но использовались не как математические понятия, а именно: доказательство и алгоритм. Я не буду про другие говорить, но эти понятия сами по себе весьма важны.
В 1900-м году на Международном математическом конгрессе в Париже Давид Гильберт, знаменитый немецкий математик, я его уже называл, выступил со списком проблем, которые, как он считал, в 20-м веке в математике будут одними из самых важных. И нужно сказать, что формулировка этих проблем сыграла очень важную роль для развития математики. В частности, человек, который решил одну из проблем Гильберта, сразу получал всемирную известность – так что это был некий критерий. Но в заключение сам Гильберт сформулировал оптимистическое утверждение, что все вопросы, которые математики могут задать, обязательно на них можно получить ответ. Но что это значило, это вопрос довольно сложный.
В частности, можно доказать, решить проблему, то есть привести доказательство, что эта проблема имеет положительное решение или отрицательное решение. Но можно задать и более хитрый вопрос. А может быть, нет доказательства ни того, ни другого? Но для того чтобы математически ответить на такой вопрос, нужно знать, что такое доказательство. И когда математическая логика предложила точное определение этому понятию, то получились результаты, которые до сих пор будоражат умы человеческие, а именно, что можно доказать, что нет доказательства того или иного утверждения. Многие люди слышали о теореме Гёделя о неполноте, многие философы рассуждают на эту тему, ну и люди, иногда далёкие от математики и философии, что-то об этом слышали, и много бывает интерпретаций, я тут не хочу анализировать все точки зрения, какие могут быть…