Вы видите, здесь работает цикл, в котором одна реакция обеспечивает поступление органического вещества и отношение атмосферная углекислота, органический углерод и кислород работают в молярном отношении один к одному. То есть для того, чтобы у вас в атмосфере остался кислород, нужно каким-то образом убрать из системы восстановленный углерод. Это действительно происходит, это машина работала, начиная с первых осадочных пород, которые известны – углерод уходил, и, соответственно, кислород оставался. Значит, один к одному работает СО2, О2 и органический углерод.
Вторая система жёстко завязанных циклов – это синтез биомассы, потому что для синтеза биомассы нужно соотношение органического углерода и азота – шесть к одному, а для фосфора и органического углерода это соотношение будет больше, чем 116 к одному. Естественно, у растений, имеющих скелет (деревья, например), это соотношение будет гораздо больше, там гораздо меньше фосфора надо. Значит, эта часть жёстко связана с совершенно жёсткими количественными отношениями.
Теперь фокус в том, каким образом может остаться в атмосфере кислород? Для того чтобы он остался, нам нужно убрать углерод. Имеются два, собственно говоря, процесса – автотрофная ассимиляция фотосинтезом (идёт естественная солнечная энергия) и есть второй процесс – разложение этого углерода.
Если дыханием полностью всё сжигается, значит, баланс нулевой, ничего не получите, как в пустыни.
А если создаются какие-то условия, препятствующие микробам разложить это синтезированное органическое вещество, то, естественно, углерод уходит в осадочные породы, там основной его резервуар. Он превращается в устойчивый углерод керогена, и, собственно говоря, на этом начинает крутиться вся биогеохимическая машина планеты.
Постепенно в течение истории Земли за счёт неполного разложения созданного органического углерода… Почему-то все забывают об одной вещи: смотрят на зелёное растение и говорят: «Ах, вот оно нам даёт кислород и убирает углекислоту». Работает, на самом деле, не одно растение, может работать только система из двух компонентов.
Вот для России мы считали такие величины по климату, и получается, что из-за того, что наша страна холодная, из-за того, что у нас много болот, то углерод проваливается в эти резервуары восстановленного углерода. А триста миллиардов тонн углерода (меньше, я округлил цифру) остаются, и это как раз даёт кислород в атмосферу. Не столько фотосинтез, которого в тропических лесах, конечно, больше, сколько невозможность разложить углерод в наших болотах, в нашем сезонном климате.
И такая же штука работала не на уровне одного года или сезона, она работала в течение миллиардов лет, причём, содержание этого керогена осталось примерно одинаково в осадочных породах.
Как это может получиться? Видимо, мы можем сказать, что хлорофильное покрытие Земли было более или менее постоянно, оно менялось в разы, но не на порядки. И с этих камушков, которые я вам показал, оно так вот и работало.
Значит, вся биогеохимическая машина планеты сформировалась с цианобактериального сообщества. Цианобактерии или сине-зелёные водоросли, как их иначе называют, составляют очень узкую по своим физиологическим способностям систему, они накапливают разнообразные органические вещества, и эти вещества начинают использоваться очень разными бактериями. То есть на каждую компоненту этого вещества нужно иметь свой «трофический маршрут», который начинается со сложного вещества, с целлюлозы, например, постепенно деградируются мелкие молекулы, доходит до ацетата уксусной кислоты, водорода и там начинает работать вторая часть цикла.
Итак, вот это нужно чётко запомнить, что система состоит из продуктивной и деструктивной части.
Чтобы кончить с этими цифрами, я должен упомянуть, что сейчас в море ещё работает серный цикл, где разложение идёт в условиях отсутствия кислорода за счёт восстановления сульфатов в сероводород – все морские системы так работают, как только уходят в анаэробные условия.
А в прошлом, примерно два миллиарда лет назад, в дополнении ещё работал железный цикл, тот самый, который создал Курскую магнитную аномалию, Костамукшу, где были накоплены чудовищные запасы кислорода, связанного железом. Считают, что в эти запасы и в сульфаты моря ушло примерно 40 процентов когда-либо образованного кислорода, если считать по углероду, остающемуся в осадочных породах.
Значит, получается такая штука, что вы не можете обходиться одним растением, одним животным, вы обязательно должны брать биосферно-геосферную систему, которая взаимодействует. И без системного подхода вы ничего не можете объяснить. И чем дальше, тем всё больше и больше приходится накручивать и расширять эту систему.
А большие системы изучать можно только одним путём: взять сначала очень большую систему, постепенно рассекать её на части, решать куски и помнить, что когда ты разрезал, выделил какую-то подсистему и начал изучать её, то тут рядом есть ещё одна система, и они взаимодействуют для создания большой системы, например, как климат взаимодействует с биотой.