• в проектах примерно от 100 тысяч строк на кодирование уходит около 20 % всего времени, и эта доля снижается с ростом сложности, тогда как обнаружение и исправление ошибок требует от 35 % времени с тенденцией к увеличению.
В любом софтостроительном процессе, будь то заказной проект или продукт для рынка, всегда можно выделить 4 основные стадии:
• анализ, чтобы понять «что делать»;
• проектирование, чтобы определить и запланировать «как делать»;
• разработка, чтобы собственно сделать;
• стабилизация, чтобы зафиксировать результат предыдущих этапов.
Если стадии, органично совпадающие с концептуальным, логическим и физическим дизайном системы, расположить иерархически без обратных связей, то получим классическую схему «водопад», исторически считающуюся первой методологией в софтостроении.
Рис. 13. Методология «водопад» в идеальном случае
«Водопад» также соответствует разработке «сверху-вниз» в структурном программировании: выделяем самые общие функции системы, проводим их декомпозицию на подфункции, а те, в свою очередь, на подподфункции и так далее, пока не упрёмся в элементарные операции.
Что же не так в схеме? С увеличением сложности реализуемой системы анализ и следующее за ним проектирование начинают занимать всё больше времени. Постепенно обнаруживаются новые детали и подробности, изменяются требования к системе, возникают новые сопутствующие задачи, расширяющие периметр. Приходится, не отдавая проектную документацию в разработку, возвращаться к анализу. Возникает риск зацикливания процесса без конечного выхода какого-либо программного обеспечения вообще.
Рис. 14. На практике «водопад» зацикливается с увеличением сложности проекта
Из сказанного вовсе не следует, что методология плоха. Просто она имеет свои границы применения, широта которых напрямую зависит не только от опыта аналитиков и проектировщиков, но и от новизны моделируемой предметной области. В достаточно консервативных банковских или промышленных приложениях «водопад» может подойти и для комплексной системы. Если же, например, возникает принципиально новый рынок, то найти опытных подрядчиков проблематично, а бизнес-направление заказчика находится в постоянной реорганизации, поэтому стадия анализа, занимающая больше 3–4 недель, рискует быть малопродуктивной. И не только стадия анализа, но и весь проект в целом. Тут впору подумать над временной автоматизацией в рамках офисного пакета и скриптовых сред вместо комплексного решения.
Очень важно отделить редкую ситуацию «бизнес меняется еженедельно» от гораздо более распространённой «представления команды разработчиков о бизнесе меняются еженедельно». Если вам говорят о якобы часто изменяющихся требованиях, всегда уточняйте, о чём, собственно, идёт речь.
Но если проблема зацикливания на требованиях может быть успешно решена выбором подрядчиков, уже имевших опыт в построении систем данного типа, то другая, гораздо более значимая проблема несовпадения взглядов заказчика и подрядчика на казалось бы одни и те же вещи стабильно проявляется с ростом проекта. Даже если принять во внимание, что только 20 % требований специфичны для заказчика, тогда как 80 % исходят непосредственно от предметной области инвариантно среде и контексту, то эти 20 % способны угробить весь проект.
Для снижения рисков такого рода в конце 1980-х годов была предложена спиральная модель софтостроения.
Необходимо отличать спиральную модель от итеративной. Спиральная модель сходится в точку «система готова», итеративная модель в общем случае не сходится, но обеспечивает реализацию всё новых и новых требований.
Рис. 15. Спиральная модель с двумя витками
Ключевой особенностью спиральной технологии является
Спиральная модель не навязывает присутствие всех стадий на каждом витке. Вполне может статься, что первый же прототип будет удачным, а функциональная и техническая архитектуры соответствуют требованиям. Тогда финальные витки будут фактически состоять только из разработки и стабилизации.