Читаем Data Science для карьериста полностью

С другой стороны, соискатели могут подумать, что им никогда не придется скучать. Они могут рассчитывать на то, что стейкхолдеры будут просто следовать их советам, дата-инженеры смогут в мгновение ока исправить любые проблемы с качеством данных, а сами они получат самые быстрые вычислительные ресурсы из возможных для реализации своих моделей. На самом деле дата-сайентисты тратят много времени на очистку и подготовку данных, а также на организацию работы с учетом ожиданий и приоритетов других команд. Проекты не всегда оказываются удачными. Высшее руководство может давать клиентам нереалистичные обещания о работе ваших моделей. Основные обязанности могут заключаться в работе с архаичной системой данных, которую невозможно автоматизировать, – каждую неделю она будет требовать многочасового монотонного труда только на их очистку. Дата-сайентисты могут обнаружить множество статистических или технических ошибок с серьезными последствиями в предыдущих расчетах, но они не будут никого интересовать. При этом специалисты настолько перегружены работой, что им просто некогда что-либо исправлять. Дата-сайентиста могут попросить подготовить отчеты, подтверждающие решение руководства, поэтому он может беспокоиться о том, что его уволят в случае, если он предоставит независимое мнение.

Эта книга поможет вам пройти путь становления в качестве специалиста по Data Science и построить карьеру. Мы хотим, чтобы вы получили все преимущества работы в этой сфере и избежали большинства подводных камней. Возможно, вы работаете в смежной области вроде маркетинговой аналитики и подумываете сменить сферу деятельности. Или, может быть, вы уже работаете дата-сайентистом, но ищете новое место работы и полагаете, что подошли к предыдущему процессу поиска недостаточно хорошо. Возможно, вы хотите продолжить карьеру, выступая на конференциях, участвуя в разработке open source, или же стать независимым консультантом. Мы уверены, что, каким бы ни был ваш нынешний уровень, эта книга окажется вам полезной.

В первых четырех главах мы описали, как можно начать путь в Data Science и создать портфолио: так мы попытались решить парадокс, когда опыт можно получить только при изначальном владении практическими навыками. В части 2 мы покажем, как составить сопроводительное письмо и резюме, с которыми вас точно пригласят на собеседование, и расскажем, как создать сеть контактов для получения рекомендации. Мы также рассмотрим стратегии переговоров, которые, как показывают исследования, позволят вам получить наилучшие условия оффера.

Как дата-сайентисту вам необходимо будет разрабатывать методы анализа, взаимодействовать со стейкхолдерами и, возможно, даже участвовать в развертывании модели в производство. Часть 3 поможет понять, как устроены все эти процессы и как можно самому настроиться на успех. В части 4 вы найдете стратегии, которые помогут вам собраться с силами в тех неизбежных случаях, когда ваш проект терпит крах. А когда вы будете готовы, мы поможем вам решить, как продолжать свою карьеру – стать менеджером, остаться исполнителем или даже стать независимым консультантом.

Однако прежде, чем начать этот путь, вы должны разобраться в том, кто такие дата-сайентисты и какую работу они выполняют. Data Science – это очень широкое поле деятельности, которое включает в себя много направлений, и чем лучше вы понимаете разницу между ними, тем успешнее вы сможете в них развиваться.

<p>1.1. Что такое Data Science?</p>

Data Science (DS) – это практика использования данных, с помощью которой можно попытаться понять и решить реальные задачи. Эта концепция не нова; люди анализируют объемы и тенденции продаж с тех пор, как изобрели ноль. Однако за последнее десятилетие нам стало доступно экспоненциально большее количество данных, чем прежде. Появление компьютеров помогло генерировать их, и только путем машинных вычислений можно обрабатывать так много информации. С помощью компьютерного кода дата-сайентист может преобразовывать или накапливать данные, проводить статистический анализ или тренировать модели машинного обучения (МО). В результате могут быть созданы отчет, информационная панель или модель МО, которую можно будет запустить в непрерывную работу.

Например, если розничная компания не может определиться с местом для нового магазина, она может пригласить дата-сайентиста для проведения соответствующего анализа. Он соберет статистические данные об адресах доставки онлайн-заказов, чтобы понять, где находится потребительский спрос. Специалист также может совмещать выводы о местонахождении клиентов с информацией о демографической ситуации и доходах в этих местах на основании данных переписи населения. С помощью этих датасетов можно найти оптимальное место для нового магазина и создать презентацию Microsoft PowerPoint, чтобы представить рекомендации вице-президенту компании по коммерческой деятельности.

Перейти на страницу:

Похожие книги

Чистая архитектура. Искусство разработки программного обеспечения
Чистая архитектура. Искусство разработки программного обеспечения

«Идеальный программист» и «Чистый код» – легендарные бестселлеры Роберта Мартина – рассказывают, как достичь высот профессионализма. «Чистая архитектура» продолжает эту тему, но не предлагает несколько вариантов в стиле «решай сам», а объясняет, что именно следует делать, по какой причине и почему именно такое решение станет принципиально важным для вашего успеха.Роберт Мартин дает прямые и лаконичные ответы на ключевые вопросы архитектуры и дизайна. «Чистую архитектуру» обязаны прочитать разработчики всех уровней, системные аналитики, архитекторы и каждый программист, который желает подняться по карьерной лестнице или хотя бы повлиять на людей, которые занимаются данной работой.

Роберт Сесил Мартин , Роберт С. Мартин

Программирование, программы, базы данных / Зарубежная компьютерная литература / Книги по IT
Искусство Agile-разработки. Теория и практика гибкой разработки ПО
Искусство Agile-разработки. Теория и практика гибкой разработки ПО

Большинство компаний, разрабатывающих ПО, якобы используют Agile, но на самом деле не понимают, что это такое Agile. Хотите повысить гибкость своей команды? В книге вы найдете четкие, конкретные и подробные рекомендации о том, что, как и почему следует делать, а когда стоит пойти на компромиссы.Джеймс Шор предлагает реальные решения по освоению, планированию, разработке и управлению, основанные на более чем двадцатилетнем опыте Agile. Он объединяет актуальные идеи экстремального программирования, Scrum, Lean, DevOps и многих других в единое целое. Узнайте, как успешно внедрить гибкую разработку в вашей команде и организации, или разберитесь, почему Agile вам не подходит.В формате PDF A4 сохранен издательский макет книги.

Джеймс Шор , Шэйн Уорден

Зарубежная компьютерная литература / Книги по IT