Рисунки этого танца характеризуют сущность каждой частицы и ее свойства. Так, например, запас энергии, необходимый для испускания и поглощения виртуальной частицы, эквивалентен определенному количеству массы, которое добавляется к массе самовзаимодействующей частицы. Различные частицы принимают разное участие в этом танце; каждая из них имеет своя параметры энергии и массы. Наконец, виртуальные частицы не только представляют собой единственное средство осуществления взаимодействий между частицами, а, соответственно, и объяснение их свойств, но могут порождаться вакуумом и черпать свою энергию из него. Таким образом, в космическом танце принимает участие не только материя, но и Пустота, бесконечно творя и разрушая энергетические паттерны.
Современные физики воспринимают танец Шивы как танец субатомной материи. Как и в индуистской мифологии, последний представляет собой бесконечный танец сотворения и разрушения, в котором принимает участие весь космос; основу всякого бытия и всех явлений природы. Столетия тому назад индийские скульпторы создавали величественные бронзовые изваяния танцующего Шивы. В наше время физики разработали сложнейшие приборы для того, чтобы получить портрет Вселенной в ее космическом Танце. Фотографии пузырьковой камеры, на которых запечатлены взаимодействия частиц, тоже являются изображениями рисунка танца Шивы, которые не уступают по красоте и значению своим индуистским аналогам. Эти фотографии доказывают, что Вселенная постоянно претерпевает процессы ритмического сотворения и разрушения. Таким образом, метафора космического танца объединяет древнюю мифологию, религиозное искусство и современную физику. Как говорит Кумарасвами, эта метафора представляет собой «поэзию, и в то же время — науку».
Глава 16. СИММЕТРИЯ В МИРЕ КВАРКОВ — «ЕЩЕ ОДИН КОАН?»
В субатомном мире безраздельно властвуют ритм, движение и непрестанное изменение. Все изменения не случайны и не произвольны. Они следуют очень четким и ясным паттернам. Начнем с того, что все частицы той или иной разновидности абсолютно идентичны по массе, величине электрического заряда и другим характерным показателям. Далее, все заряженные частицы имеют электрический заряд, который либо равен заряду электрона, либо противоположен ему по знаку, либо превышает его в два раза. То же относится к остальным характеристикам частиц; они могут принимать не любые произвольные значения, а только ограниченное их количество, что позволяет нам разделить частицы на несколько групп, которые могут быть также названы «семьями». Это подводит нас к вопросу: каким образом такие определенные паттерны возникают в динамическом и изменчивом мире частиц?
Возникновение четких паттернов в структуре материи — вовсе не новое явление. Оно уже хорошо известно в мире атомов. Как и субатомные частицы, все атомы, принадлежащие к одной и той же разновидности, характеризуются идентичным строением. В периодической таблице все разновидности атомов, или элементы, объединены в несколько больших групп. В наше время ученые хорошо представляют себе основания для такой классификации: она зависит от количества протонов и нейтронов в их ядрах и от распределения электронов по сферическим орбитам вокруг ядер, или «оболочкам». Как уже говорилось ранее, электроны имеют свойства волн (см. гл. 4). Поэтому расстояние между электронными орбитами и количество вращения, которым может обладать электрон, характеризуется несколькими устойчивыми значениями, которые зависят от колебаний электронных волн. Соответственно, в структуре атома возникают определенные паттерны, которые характеризуются набором «квантовых чисел» и которые отражают колебательные паттерны электронных волн на орбитах внутри атома. Эти колебания определяют «квантовые состояния» атома. Поэтому два атома, находящихся в «основном состоянии» или же в одном из «возбужденных состояний», имеют одну и ту же внутреннюю структуру.
Паттерны в мире частиц во многом схожи с паттернами в мире атомов. Так, большинство частиц вращается вокруг своей оси, подобно юле. Их спины могут принимать только некоторые определенные значения, представляющие собой интеграл, помноженный на какую-то базовую единицу. Барионы, например, могут иметь спин, равный 1/2, 3/2, 5/2 и т. д., тогда как мезоны могут иметь спин, равный 0, 1, 2, и т.д. Спин субатомной частицы напоминает нам о количествах вращений электронов на орбитах внутри атома. Спин электрона тоже может быть только целым числом.