Читаем Command and Control полностью

The “early fallout” of a nuclear blast is usually the most dangerous. The larger particles of radioactive material drop from the mushroom cloud within the first twenty-four hours, landing wherever wind or rain carries them. On the ground, radiation levels steadily increase as the fallout accumulates. Unlike the initial burst of gamma rays from a nuclear explosion, the residual radiation can remain hazardous for days, months, or even years. A dose of about 700 roentgens is almost always fatal to human beings — and that dose need not be received all at once. Radiation poisoning, like a sunburn, can occur gradually. Gamma rays are invisible, and radioactive dust looks like any other dust. By the time a person feels the effects of the radiation damage, nothing can be done to reverse it.

“Delayed fallout” poses a different kind of risk. Minute particles of radioactive material may be pulled into the upper atmosphere and travel thousands of miles from the nuclear blast. Most of the gamma rays are emitted long before this fallout lands. But a number of radioactive isotopes can emit beta particles for long periods of time. Strontium-90 is a soft metal, much like lead, with a radioactive half-life of 29.1 years. It is usually present in the fallout released by thermonuclear explosions. When strontium-90 enters the soil, it’s absorbed by plants grown in that soil — and by the animals that eat those plants. Once inside the human body, strontium-90 mimics calcium, accumulates in bone, and continues to emit radiation, often causing leukemia or bone cancer. Strontium-90 poses the greatest risk to children and adolescents, whose bones are still growing. Along with cesium-137, a radioactive isotope with a half-life of 30 years, it may contaminate agricultural land for generations.

In 1952, Mike’s thermonuclear explosion had deposited high levels of fallout in the ocean near the test site. The following year, New York milk tainted with strontium-90 was linked to the detonation of fission devices at the Nevada Test Site. But the unanticipated size of Shrimp’s yield, the volume of coral reef and seafloor displaced, and the stronger-than-expected winds combined to produce an amount of fallout that surprised everyone involved with the Bravo test. Thousands of scientists and military personnel, watching the detonation from ships thirty miles away, were forced to head belowdecks and remain there for hours amid stifling heat. O’Keefe and his men had to be rescued by helicopter. They taped bedsheets over every inch of their bodies before fleeing the bunker, trying to avoid any contact with the fallout.

Seaplanes evacuated an Air Force weather station 153 miles from ground zero, and two days after the blast, the Navy removed scores of villagers from the island of Rongelap in the Marshall Islands. The villagers had seen the brilliant explosion 115 miles in the distance but had no idea the white dust that later fell from the sky might be harmful. It settled on their skin and in their hair. They walked barefoot in it for hours. About eighty of them got radiation sickness. Many also developed burns, lesions, and discolored pigment from beta particles emitted by the fallout on their skin. And Rongelap was blanketed with so much of the white dust that the island’s residents weren’t allowed to return there for three years.

The dangers of fallout were inadvertently made public when a Japanese fishing boat, the Lucky Dragon, arrived at its home port of Yaizu two weeks after the Bravo test. The twenty-three crew members were suffering from radiation poisoning. Their boat was radioactive — and so was the tuna they’d caught. The Lucky Dragon had been about eighty miles from the detonation, well outside the military’s exclusion zone. One of the crew died, and the rest were hospitalized for eight months. The incident revived memories of Hiroshima and Nagasaki, sparking protests throughout Japan. When Japanese doctors asked for information about the fallout, the American government refused to provide it, worried that details of the blast might reveal the use of lithium deuteride as the weapon’s fuel. Amid worldwide outrage about the radiation poisonings, the Soviet Union scored a propaganda victory. At the United Nations, the Soviets called for an immediate end to nuclear testing and the abolition of all nuclear weapons. Although sympathetic to those demands, President Eisenhower could hardly agree to them, because the entire national security policy of the United States now depended on its nuclear weapons.

* * *
Перейти на страницу:

Похожие книги

1917 год. Распад
1917 год. Распад

Фундаментальный труд российского историка О. Р. Айрапетова об участии Российской империи в Первой мировой войне является попыткой объединить анализ внешней, военной, внутренней и экономической политики Российской империи в 1914–1917 годов (до Февральской революции 1917 г.) с учетом предвоенного периода, особенности которого предопределили развитие и формы внешне– и внутриполитических конфликтов в погибшей в 1917 году стране.В четвертом, заключительном томе "1917. Распад" повествуется о взаимосвязи военных и революционных событий в России начала XX века, анализируются результаты свержения монархии и прихода к власти большевиков, повлиявшие на исход и последствия войны.

Олег Рудольфович Айрапетов

Военная документалистика и аналитика / История / Военная документалистика / Образование и наука / Документальное