The risk of a nuclear accident at a European base was increased by the fact that the training and operating manuals for the Mark 7—indeed, for all the weapons in the NATO atomic stockpile — were written in English. But many of the NATO personnel who handled the weapons could not read or speak English. And few of them knew what to do if something went wrong. “In many areas we visited,” the joint committee found, “little or no Explosive Ordnance Disposal (EOD) capability was available in the event of accidental radioactive contamination resulting from fire, carelessness, or accident, or in the event of threat to custody and security of the weapon requiring emergency disposal.” Western Europe was more densely populated than the United States, and a cloud of plutonium, released by a nuclear weapon, could threaten a large number of people. The possibility of such an accident was “far from remote,” according to the joint committee. It cited a mishap on January 16, 1961, just a few days before Kennedy’s inauguration. The underwing fuel tanks of a U.S. Air Force F-100D fighter were mistakenly jettisoned when the pilot started the engines. The plane was on alert at the Lakenheath air base in Suffolk, England. The fuel tanks hit the runway and ruptured, some fuel ignited, and a Mark 28 hydrogen bomb mounted beneath the plane was engulfed in flames. Firefighters managed to extinguish the blaze before the weapon’s high explosives could detonate or ignite. Because the accident occurred at a military base, away from the scrutiny of the press and the public, neither the American government nor the British would acknowledge that it happened.
The Joint Committee on Atomic Energy unanimously agreed that the Jupiter missiles should be removed from Italy — and should never be deployed in Turkey. The missiles seemed to pose more of a threat to NATO, one way or another, than to the Soviets. And placing missiles with thermonuclear warheads in Turkey, a politically unstable country that bordered the Soviet Union, might be viewed as a provocation at the Kremlin. The joint committee also recommended that the Mark 7 bomb either be removed from the NATO stockpile or fitted with a trajectory-sensing switch, so that a mistake by a ground crew would be less likely to cause an accidental detonation. Moreover, the current “fictional” custody arrangements had to be replaced with measures that gave the United States “real” possession and control of its nuclear weapons in Europe. A lone American sentry, ordered to stand on a runway for eight hours at a time, was bound to start “goofing off.” The committee wanted at least two American solders keeping an eye on the igloos, the missiles, the fighter planes on alert. It wanted American vehicles and troops, at every major NATO base, capable of evacuating or destroying nuclear weapons that an enemy or an ally might want to seize. And most of all, the committee wanted some kind of mechanical device added to NATO’s weapons so that unauthorized personnel couldn’t detonate them.
Harold Agnew had recently met with Donald R. Cotter, a supervisor at Sandia, about the best way to install use controls on a nuclear weapon. Cotter mentioned an electromechanical lock that Sandia was developing for atomic land mines. The weapons were, essentially, time bombs that NATO troops could arm and then leave behind to destroy buildings, bridges, airfields, or units of an invading Red Army. The new lock had originally been conceived as a safety device. Because these weapons wouldn’t be dropped from a plane or launched by a missile, a trajectory-sensing switch wouldn’t help to prevent accidental detonations. The g-forces that a land mine would normally experience before being armed would be the same as those of the soldier carrying it. And the weapon might sit for hours or days before exploding. But a motor-driven lock inside the mine, connected by a long cable to a handheld decoder, would allow troops to arm the weapon from a safe distance. Agnew thought that sort of lock would solve many of the custody problems at NATO. A coded switch, installed in every nuclear weapon, would block the crucial arming circuits. It would make a clear distinction between the physical possession of a weapon and the ability to use one. It would become a form of remote control. And the power to exert that control, to prohibit or allow a nuclear detonation, would remain with whoever had the code.