Читаем Что мы думаем о машинах, которые думают. Ведущие мировые ученые об искусственном интеллекте полностью

Научная проблематика в моей области — физике частиц — это смесь физики и философии. Доступные нам сейчас инструменты измерения дают настолько неправдоподобные результаты, что некоторые начали воображать, будто мы живем в одной из множества вселенных и среди них обязательно есть те, где существуют такие же неправдоподобные физические константы. Философия просачивается в физику вместе со словом «неправдоподобные». Несмотря на все, чего мы достигли в области решения научных проблем, темная энергия и темная материя все еще остаются для нас тайнами, таким образом, 96 % материи/энергии во Вселенной не укладываются в наши нынешние представления. Есть ли теоретические основания, находящиеся за пределами квантовой теории поля, для того чтобы описать законы природы в экстремумах малых частиц и больших скоростей? Может ли наше понимание элементарной частицы оказаться попросту необоснованным?

Машины уже помогают нам лучше формулировать вопросы. Их информационные аппетиты позволяют нам мечтать о том, чтобы по-новому взаимодействовать с нашим окружением. Но если бы машины могли мыслить, какие вопросы о Вселенной интересовали бы их в первую очередь? Как бы они подходили к их разрешению? Готова поспорить, у людей было бы что добавить к ответам на их вопросы. Все-таки наш мозг — удивительная машина.

<p>Мыслящие машины — это старые алгоритмы на более быстрых компьютерах</p>Барт КоскоПреподаватель электромеханики; преподаватель инженерного дела и правоведения в Университете Южной Калифорнии; автор книги «Шум» (Noise)

Машины не думают. Они аппроксимируют функции. Они превращают входные данные в выходные данные. Кнопка карманного калькулятора «корень квадратный» превращает число 9 в число 3. Хорошо тренированная сверточная нейронная сеть превращает изображение вашего лица в результат «1». Она также превращает изображение, на котором вашего лица нет, в результат «0».

Многослойная или «глубинная» нейронная сеть сводит оценку любого изображения к оценке вероятности того, что на нем есть ваше лицо. Таким образом, тренированная сеть аппроксимирует вероятностную функцию. Этому процессу, чтобы хоть иногда получать правильные результаты, требуется ошеломительное количество вычислений. Но в конечном итоге он все равно преобразует входные данные в выходные. Он всего лишь аппроксимирует функцию, даже если результат походит на человеческое восприятие или мышление. Для этого просто нужно много вычислительной мощности.

«Разумные» машины аппроксимируют комплексные функции, которые работают с паттернами, такими как речь, изображения или любые другие сигналы. Паттерны изображений обычно состоят из множества пикселей или вокселей и часто имеют большую размерность. Связанные с ними паттерны вполне могут выходить за пределы того, что в состоянии охватить человеческий разум. В этом вопросе преимущество компьютеров будет усиливаться по мере их совершенствования.

В решении числовых задач большого объема нам удалось добиться действительно серьезных успехов. Это стало следствием постоянного удвоения плотности монтажа схем, которое происходит примерно раз в два года в соответствии с законом Мура, а не появления каких-то принципиально новых алгоритмов. Такой экспоненциальный рост вычислительной мощности позволяет обычным с виду компьютерам решать более сложные задачи, связанные с большими данными и распознаванием паттернов.

Рассмотрим наиболее популярные алгоритмы больших данных и машинного обучения. Один алгоритм неконтролируемый (ему не требуется учитель, чтобы присваивать данным метки), другой — контролируемый (ему требуется учитель), именно с ними связана значительная часть работ в области прикладного ИИ.

Неконтролируемый алгоритм называется кластеризацией методом k-средних, и, возможно, это самый популярный способ работы с большими данными. Он объединяет подобное с подобным и лежит в основе Google News. Начнем с миллиона измерительных точек. Сгруппируем их в 10, 50 или 100 кластеров или паттернов. Это вычислительно сложная задача. Но кластеризация методом k-средних является итеративным способом формирования кластеров по меньшей мере с 1960-х годов. Что изменилось, так это размерность задач, с которыми могут справляться современные компьютеры. Сам алгоритм называли разными именами, так или иначе намекающими на ИИ, например «самоорганизующаяся карта» или «адаптивная квантизация векторов». Но это все тот же старый двухступенчатый итеративный алгоритм из 1960-х.

Перейти на страницу:

Все книги серии Искусственный интеллект

Роботы наступают. Развитие технологий и будущее без работы
Роботы наступают. Развитие технологий и будущее без работы

Смогут ли роботы обеспечить людям материальное изобилие, избыток свободного времени, качественную медицину и образование или же они превратят нашу планету в мир неравенства и массовой безработицы? Правда ли, что усердие и талант перестанут быть залогом жизненных достижений?Успешный разработчик программ и IT-предприниматель Мартин Форд не претендует на то, что знает ответы на все вопросы, но аргументированно и веско показывает, почему современные технологии способны оказаться намного более разрушительными для рынка труда, чем инновации прошлого. Цель автора — не испугать читателя, а привлечь внимание к этим непростым темам. Эту увлекательную и содержательную книгу стоит прочитать всем, кто хочет понять, как развитие новых технологий влияет на экономические перспективы, на наших детей и на общество в целом.

Мартин Форд

Публицистика
Восстание машин отменяется! Мифы о роботизации
Восстание машин отменяется! Мифы о роботизации

Будущее уже наступило: роботов и новые технологии человек использует в воздухе, под водой и на земле. Люди изучают океанские впадины с помощью батискафов, переводят самолет в режим автопилота, используют дроны не только в обороне, но и обычной жизни. Мы уже не представляем мир без роботов.Но что останется от наших профессий – ученый, юрист, врач, солдат, водитель и дворник, – когда роботы научатся делать все это?Профессор Массачусетского технологического института Дэвид Минделл, посвятивший больше двадцати лет робототехнике и океанологии, с уверенностью заявляет, что автономность и искусственный интеллект не несут угрозы. В этой сложной системе связь между человеком и роботом слишком тесная. Жесткие границы, которые мы прочертили между людьми и роботами, между ручным и автоматизированным управлением, только мешают пониманию наших взаимоотношений с робототехникой.Вместе с автором читатель спустится на дно Тирренского моря, чтобы найти древние керамические сосуды, проделает путь к затонувшему «Титанику», побывает в кабине самолета и узнает, зачем пилоту индикатор на лобовом стекле; найдет ответ на вопрос, почему Нил Армстронг не использовал автоматическую систему для приземления на Луну.Книга будет интересна всем, кто увлечен самолетами, космическими кораблями, подводными лодками и роботами, влиянием технологий на наш мир.

Дэвид Минделл

История техники
Homo Roboticus? Люди и машины в поисках взаимопонимания
Homo Roboticus? Люди и машины в поисках взаимопонимания

Хотим мы этого или нет, но скоро нам придется сосуществовать с автономными машинами. Уже сейчас мы тратим заметную часть времени на взаимодействие с механическими подобиями людей в видеоиграх или в виртуальных системах – от FAQbots до Siri. Кем они станут – нашими слугами, помощниками, коллегами или хозяевами? Автор пытается найти ответ на философский вопрос о будущих взаимоотношениях людей и машин и представляет читателям группу компьютерщиков, программистов, робототехников и нейробиологов, считающих, что мы подходим к переломному моменту, когда искусственный интеллект превзойдет человеческий и наш мир безвозвратно изменится. Однако место человека в этом новом мире специалисты видят по-разному, и автор знакомит нас со всем спектром мнений. Центральная тема книги – двойственность и парадоксальность, присущие деятельности разработчиков, которые то расширяют возможности человека, то заменяют людей с помощью создаваемых систем.

Джон Маркофф

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука