В специфическую подзону рационального бессознательного можно выделить те случаи, когда мы пользуемся несобственно рациональными, скажем, технологическими, инструментальными, определениями для каких-нибудь вещей, операций, не стремясь или до поры будучи не в состоянии выяснить их чисто рациональную природу. Так было, в частности, на протяжении двух с половиной тысячелетий в математике, пользовавшейся построениями с помощью циркуля и линейки (инструментальный критерий). Лишь в ХIХ в. сформулирована полная совокупность логических условий, стоящих за подобной инструментальностью. Чем были такие условия до упомянутой формулировки? Сказать, что открытие данной области еще не состоялось, неточно: дескрипция через циркуль-линейку по-своему удовлетворительна и достаточна, – но ее собственно рациональная основа долгое время оставалась полулатентной.
Следует указать и на так называемое межцивилизационное старо-рациональное, т.е. на то, что ни одной из исторических цивилизаций в полном объеме известно не было, но что, тем не менее, находило воплощение: одна цивилизация разрабатывала одну логическую интенцию, другая – вторую, но они обе – как две стороны медали некоего общего рационального. Один из таких прецедентов применительно к Востоку и Западу будет затронут в
К особому подвиду рационального бессознательного относится то, что связывает между собой различные дисциплины. Для иллюстрации воспользуемся словами Е.Вигнера из доклада "Непостижимая эффективность математики в естественных науках".
"Встретились как-то раз два приятеля, знавшие друг друга со студенческой скамьи, и разговорились о том, кто чем занимается. Один из приятелей стал статистиком и работал в области прогнозирования изменения численности народонаселения. Оттиск одной из своих работ статистик показал бывшему соученику. Начиналась работа, как обычно, с гауссова распределения. Статистик растолковал своему приятелю смысл используемых в работе обозначений для истинных показателей народонаселения, для средних и т.д. Приятель был немного привередлив и отнюдь не был уверен в том, что статистик его не разыгрывает.
– Откуда тебе известно, что все обстоит именно так, а не иначе? – спросил он. – А это что за символ?
– Ах, это, – ответил статистик. – Это число .
– А что оно означает?
– Отношение длины окружности к ее диаметру.
– Ну, знаешь, говори, да не заговаривайся, – обиделся приятель статистика. – Какое отношение имеет численность населения к длине окружности?" [73, с. 182].
Подобных примеров можно привести в изобилии, и неясность связи современных концепций со старо-рациональными не всегда обусловлена только тем, что соединительная цепочка умозаключений длинна. Упомянутая неясность порой принципиальна. Так, кстати, обстоит дело в самой арифметике. С тех пор как К.Гёдель доказал в 1931 г. теоремы о неполноте, из которых, в частности, вытекает, что не существует полной формальной теории, где были бы доказуемы все истинные теоремы арифметики, точки над i оказались расставлены: различные разделы арифметики существуют относительно независимо друг от друга.(11) Так мы их и проходим в школе – перескакивая от одной темы к другой.