Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Дюрера часто считают величайшим немецким художником эпохи Возрождения. Родился он 21 мая 1471 года в имперском городе Нюрнберге в семье ювелира, трудившегося не покладая рук. Уже в 19 лет Альбрехт проявлял недюжинный талант живописца и резчика по дереву и заметно превзошел своего учителя, лучшего нюрнбергского живописца и книжного иллюстратора Михаэля Вольгемута. Поэтому Дюрер на четыре года отправился путешествовать и за это время пришел к убеждению, что математика – «самая точная, логичная и графически выверенная из всех наук» – должна быть важной составной частью изобразительного искусства.

Вернувшись, он пробыл в Нюрнберге совсем недолго, но за это время успел жениться на Агнесе Фрей, дочери преуспевающего ремесленника, а затем снова отправился в путешествие – в Италию – с целью расширить свой кругозор и в математике, и в изобразительном искусстве. Видимо, этой цели он вполне достиг во время визита в Венецию в 1494–1495 году. Встреча с основателем венецианской школы живописи Джованни Беллини (ок. 1426–1516) произвела на молодого художника неизгладимое впечатление, он восхищался Беллини до конца своих дней. В это же время Дюрер познакомился и с Якопо де Барбари, тем самым, который написал портрет Луки Пачоли (рис. 50), а в результате изучил и труды Пачоли о математике и ее значении в изобразительном искусстве. В частности, де Барбари показал Дюреру, как строить мужскую и женскую фигуры при помощи геометрических методов, и это подтолкнуло Дюрера к изучению пропорций и движения человеческого тела.

Возможно, Дюрер встречался с Пачоли и лично – это было в Болонье во время его второго визита в Италию (1501–1507). В письме того времени он упоминает, что поездка в Болонью предпринималась «ради искусства, поскольку там есть человек, который научит меня тайному искусству перспективы». Загадочный «человек из Болоньи», по мнению многих толкователей, – именно Пачоли, хотя предлагаются и другие имена, например, выдающийся зодчий Донато ди Анджело Браманте (1444–1514) и теоретик архитектуры Себастьяно Серлио (1475–1554). Во время того же путешествия в Италию Дюрер снова встретился с Якопо ди Барбари. Однако второй визит для Дюрера был омрачен параноидальными подозрениями: он боялся, как бы другие художники, позавидовав его славе, не навредили ему. В частности, он отказывался от приглашений на обеды из опасения, что кто-нибудь попытается его отравить.

С 1495 года Дюрер демонстрирует серьезный интерес к математике. Он долго изучал «Начала» (приобрел в Венеции латинский перевод, хотя латынь знал не очень хорошо), сочинения Пачоли по математике и изобразительному искусству и авторитетные труды по архитектуре, пропорциям и перспективе римского зодчего Витрувия и итальянского зодчего и теоретика Леона Баптисты Альберти (1404–1472).

Вклад Дюрера в историю золотого сечения состоит и в письменных трудах, и в произведениях изобразительного искусства. В 1525 году вышел в свет его главный трактат «Unterweisung der Messung mit dem Zirkel und Richtscheit» («Трактат об измерениях при помощи циркуля и линейки»), одна из первых книг по математике, опубликованных в Германии. В этом сочинении Дюрер жалуется, что очень многие художники невежественны в геометрии, «без которой никто не может ни быть, ни стать совершенным художником». В первой из четырех книг, составляющих «Трактат», даны подробные рекомендации, как строить различные кривые, в том числе и логарифмическую (равноугольную) спираль, которая, как мы уже видели, тесно связана с золотым сечением. Вторая книга содержит точные и приблизительные способы построения различных многоугольников, в том числе и два способа построения правильного пятиугольника (один точный, другой приблизительный). В четвертой книге обсуждаются платоновы тела, а также и другие многогранники – некоторые из них Дюрер изобрел сам – и теория перспективы и светотени. Книга Дюрера задумана не как учебник по геометрии, в частности, он дает лишь один пример доказательства. Напротив, Дюрер всегда начинает с практического применения, а затем перечисляет самые основные теоретические сведения. Книга содержит и первые примеры разверток многогранников. Развертка – это рисунок на плоскости, где изображена поверхность многогранника в таком виде, что ее можно вырезать и сложить из получившейся фигуры трехмерный многогранник. Чертеж развертки додекаэдра (связанного, как мы знаем, с золотым сечением), выполненный Дюрером, мы видим на рис. 54.

Рис. 54

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное