Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Эволюция и естественный отбор, несомненно, сыграли важнейшую роль в наших теориях мироустройства. Именно поэтому мы в наши дни больше не придерживаемся физических взглядов Аристотеля. Однако я не имею в виду, что эволюция всегда идет плавно и непрерывно. Биологической эволюции на Земле это отнюдь не было свойственно. Извилистый путь жизни на Земле то и дело формировался под воздействием внешних причин, например, массовой гибели того или иного вида. Влияние астрономических тел – комет или астероидов по нескольку миль в диаметре – истребило динозавров и проложило млекопитающим путь к доминированию. Эволюция теорий об устройстве Вселенной то и дело двигалась рывками благодаря квантовым скачкам в научной мысли. Прекрасные примеры подобных блистательных рывков – Ньютонова теория всемирного тяготения и теория общей относительности Эйнштейна («До сих пор не понимаю, как он до нее додумался», – говорил покойный физик Ричард Фейнман). Как же объяснить подобные чудесные открытия? Никак. В том же смысле, как невозможно объяснить, каким образом в мире шахмат, привыкшем к победам с перевесом в пол-очка, Бобби Фишер на пути к мировому первенству в 1971 году ни с того ни с сего разгромил гроссмейстеров Марка Тайманова и Бента Ларсена со счетом шесть – ноль. И так же трудно разобраться, как натуралисты Чарльз Дарвин (1809–1882) и Альфред Рассел Уоллес (1823–1913) независимо друг от друга вывели концепцию эволюции как таковой – что вдохновило их, что подтолкнуло к мысли, что вся жизнь на земле произошла из общего источника, развивавшись разными путями? Нужно просто признать, что кое-кто на голову выделяется из толпы и ему приходят в голову фантастические мысли. Но вписываются ли исполины-новаторы вроде Ньютона и Эйнштейна в теорию эволюции и естественного отбора? Да, вписываются, однако для этого приходится толковать естественный отбор несколько иным, не общепринятым способом. У теории всемирного тяготения во времена Ньютона не было конкуренток, однако она не дожила бы до наших дней, не будь она «самой приспособленной». Напротив, Кеплер предложил модель взаимодействия Солнца и планет, которая протянула совсем недолго: согласно этой модели Солнце, вращаясь вокруг своей оси, испускает лучи магнетической силы. Предполагалось, что эти лучи цепляются за планеты и подталкивают их по круговым орбитам.

Если принять общие определения эволюции, допускающей квантовые скачки, и естественного отбора, действующего в течение длительного времени, то, пожалуй, можно найти объяснение «непостижимой» эффективности математики. Наша математика – символическая репрезентация вселенной в том виде, в каком мы ее воспринимаем, и могущество математики постоянно растет благодаря изысканиям человека.

Джеф Раскин, создатель компьютера «Макинтош» в корпорации «Эппл», подчеркивает иной аспект – эволюцию человеческой логики. В эссе об эффективности математики, опубликованном в 1998 году, Раскин приходит к выводу, что «человеческая логика [курсив мой. – М. Л.] навязана нам физическим миром и поэтому соответствует ему. Математика выведена из логики. Вот почему математика точно описывает физический мир».

В пьесе «Тамерлан великий», где идет речь о герое-злодее маккиавеллиевского толка, который одновременно может быть и нежной душой, и жестоким убийцей, великий английский драматург Кристофер Марло (1564–1593) признает страсть человека к познанию Вселенной:

Из четырех враждующих стихийСоздав людей, природа в них вложилаТревожный и неукротимый дух:Он постигает стройный ход созвездийИ дивную гармонию вселенной,Пылает ненасытной жаждой знанья,Мятется, как далекий рой планет;Он нам велит идти, искать, стремиться…(Пер. Э. Линецкой)

Золотое сечение есть продукт геометрии, которую изобрели люди. Однако люди не представляли себе, в какую волшебную страну заведет их это изобретение. Если бы мы не изобрели геометрию, то, вероятно, вообще не знали бы ничего о золотом сечении. Однако – кто знает? – возможно, мы получили бы его в результате работы короткой компьютерной программы.

<p>Приложение 1</p>

Мы хотим доказать, что для любых целых чисел p и q, таких, что  q, три числа: p2 – q2; 2pq; p2 + q2 формируют пифагорову тройку. Иначе говоря, нам надо доказать, что сумма квадратов первых двух чисел равна квадрату третьего.

Для этого мы обратимся к общим формулам сокращенного умножения, справедливым для любых a и b:

(a b)2 = (a b) x (a b)a2 ab ba b2 = a2 + 2ab +  b2

(a – b)2 = (a – b) x (a – b)a2 – ab – ba b2 = a2 – 2ab – b2.

На основании этих формул квадрат первого числа равен

(p2 – q2)2 = p4 – 2p2q2 q4.

Сумма первых двух квадратов равна

p4 – 2p2q2 q4 + 4p2q2 = p4 + 2p2q2 q4.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное