Читаем – Число Бога. Золотое сечение – формула мироздания полностью

Если бы вместо коэффициента сокращения длины 1/2 мы выбрали число чуть больше, ну, скажем, 0,6, расстояние между ветками несколько сократилось бы и рано или поздно ветки начали бы накладываться друг на друга. Очевидно, имело бы смысл поискать, какой коэффициент сокращения обеспечит во многих системах (скажем, в дренажной системе или в кровеносной системе человека) такую конфигурацию, чтобы ветки только касались друг друга и начинали перекрываться, как на рис. 116. Как ни странно, а может быть, теперь уже и не странно, оказалось, что такой коэффициент в точности равен 1/ = 0,618…! (Краткое доказательство см. в Приложении 8). Это называется золотое дерево, и его фрактальное измерение, как выяснилось, примерно равно 1,4404. У золотого дерева и подобных фракталов, составленных из простых линий, структура после нескольких разветвлений становится такой мелкой, что невооруженным глазом ее не разглядеть. Отчасти эту проблему можно решить, если вместо линий использовать двумерные геометрические фигуры вроде «лодочек» (рис. 117). Можно на каждом этапе прибегать к помощи копировальной машины с функцией уменьшения изображения, чтобы получать «лодочки», сокращенные с коэффициентом 1/. Результат – золотое дерево из «лодочек» – показан на рис. 118.

Рис. 116

Рис. 117

Можно строить фракталы не только из линий, но и из простых плоских фигур вроде треугольников и квадратов. Например, начнем с равностороннего треугольника со стороной единичной длины и к каждому его углу достроим новый треугольник с длиной стороны 1/2. На каждом свободном угле треугольников второго поколения достроим треугольник со стороной 1/4 и так далее (рис. 119). Опять же можно задаться вопросом, при каком коэффициенте уменьшения три ветви начнут соприкасаться, как на рис. 120, и ответ снова получится равным 1/. В точности то же самое произойдет, если построить похожий фрактал на основе квадрата (рис. 121) – перекрывание начинается при коэффициенте сокращения 1/ = 0,618… (рис. 122).

Рис. 118

Рис. 119

Рис. 120

Рис. 121

Рис. 122

Более того, все незакрашенные белые прямоугольники на последнем рисунке – это золотые прямоугольники. Таким образом, мы обнаруживаем, что хотя в евклидовой геометрии золотое сечение выводится из правильного пятиугольника, в геометрии фракталов оно связано даже с более простыми фигурами вроде квадратов и равносторонних треугольников. Свыкнувшись с этой концепцией, вы поймете, что мир вокруг битком набит фракталами. В терминах фрактальной геометрии можно описать самые разные предметы – от контуров леса на фоне неба до системы кровеносных сосудов в почке. Если окажется верной одна из моделей Вселенной, которая называется хаотической теорией инфляции, значит, фрактальные закономерности характерны для Вселенной в целом. Объясню суть этой концепции в самых общих чертах. Теория космической инфляции, которую выдвинул Алан Гут, предполагает, что когда нашей Вселенной была всего доля секунды от роду, наше пространство практически мгновенно раздулось до пределов, далеко превосходящих возможности наших телескопов. Движущая сила, стоявшая за этим колоссальным расширением, – весьма необычное состояние материи под названием «ложный вакуум». Эту ситуацию можно уподобить мячу, лежащему на вершине пологого холма, как на рис. 123. Дело в том, что пока Вселенная оставалась в состоянии ложного вакуума, то есть мяч лежал на вершине холма, она расширялась очень быстро, вдвое увеличиваясь в размерах за крошечную долю секунды. Стремительное расширение прекратилось, лишь когда мяч скатился с холма в низкоэнергетическую «канаву» у подножия (которая символически отражает тот факт, что ложный вакуум распался).

Рис. 123

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное