Читаем Черные дыры и структура пространства-времени полностью

Следующий сюрприз ждал ученых, когда они занялись изучением квантовых эффектов. В квантовой механике вакуум — это не просто полное отсутствие элементарных частиц. Вакуум — это весьма интересное состояние пространства, в котором постоянно возникают и тут же аннигилируют пары «частица-античастица». В спрямленном пространстве чистого выхода в виде возникших из вакуума частиц мы не имеем в силу закона сохранения энергии. То есть, фактически, частицы взаимно аннигилируются, даже не успев родиться. В 1974 году всё тот же Стивен Хокинг доказал, что вблизи горизонта это не так. Имеется ненулевая вероятность рождения пары частиц, сразу же оказывающихся по разные стороны бесконечно тонкого горизонта, причем закон сохранения энергии не нарушается, поскольку частица снаружи горизонта обладает, с точки зрения стороннего наблюдателя, положительной энергией, а частица внутри горизонта — отрицательной (при этом с точки зрения наблюдателя внутри сферы Шварцшильда всё выглядит с точностью до наоборот). Тепловое распределение испускаемых частиц соответствует температуре, которая обратно пропорциональна массе черной дыры. Даже для черных дыр звездной массы эта температура настолько близка к абсолютному нулю, что этот эффект зарегистрировать фактически невозможно. Однако, если черная дыра достаточно долго пробыла бы в полном вакууме, то за счёт эффекта Хокинга она постепенно бы теряла массу через излучение рождающихся на поверхности частиц. Теряя массу, черная дыра разогревается. Черная дыра с массой порядка 1019 кг (масса большого горного хребта) разогреется до температуры в несколько тысяч градусов и будет вылядеть белой. Однако мощность такого излучения будет составлять не больше милливатта, и зарегистрировать его по-прежнему практически невозможно. Но, чем меньше становится масса изолированной черной дыры, тем выше становится её температура, и тем быстрее она «испаряется», пока, вероятно, не испарится полностью. Фактически, если бы нам удалось сжать до плотности черной дыры всего несколько килограммов вещества (на практике нам этого, конечно, не дано!), такая черная дыра испарилась бы меньше, чем за одну миллисекунду, а энергии при этом выделилось бы больше, чем при взрыве водородной бомбы.

Наличие такого теплового излучения у черных дыр сразу создает две головоломки:

1) причины повышения энтропии черной дыры

и

2) информационный парадокс.

Попробую объяснить их смысл подробнее.

<p>2.1. Энтропия черных дыр</p>

В классической физике тепловые свойства вещества обусловлены движением составляющих его материальных частиц. Например, температура воздуха связана со среднеквадратичной скоростью теплового движения его молекул. Родственное температуре понятие называется энтропия. Энтропия дает количественное выражение степени хаотичности движения составляющих системы. Законы термодинамики позволяют связать энтропию с температурой, массой и объемом, благодаря чему её можно рассчитать, не зная микроскопических деталей строения системы. Хокинг и Бекенштейн (Bekenstein) показали, что энтропия черной дыры пропорциональна площади её горизонта, деленной на квадрат т. н. гравитационной длины Планка lPlanck = 10–33 см. Для черной дыры макроскопических размеров значение энтропии получается просто чудовищным. Однако законов термодинамики в данном случае, похоже, ничто не отменяет, и они продолжают действовать даже с учетом, по сути, бесконечного «вклада» невидимых недр черной дыры в её энтропию. Результаты эти крайне озадачивают, прежде всего, потому, что совершенно не ясно, из чего «складывается» энтропия черной дыры, поскольку никаких явных компонентов, которые своим хаотичным движением могли бы способствовать беспредельному увеличению энтропии, внутри черной дыры нет. По крайней мере, мы не можем усмотреть их «снаружи», поскольку нам видится только по-настоящему «черная» дыра — бездонный провал в ткани пространства-времени, и чтобы понять, из каких «компонентов» она реально состоит, необходимо найти какие-то самые фундаментальные составные элементы, на которые можно разложить саму геометрию пространства-времени.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука