В 1863 году Де Шонкуртуа расположил атомные массы по спирали на поверхности цилиндра, разделенной на вертикальные полосы. При этом элементы со сходными свойствами оказались расположенными на одной вертикали.
Джон Ньюлендс заметил, что если расположить элементы в порядке возрастания их массы, то каждый восьмой элемент будет чем-то подобен. Ньюлендс назвал это правило «законом октав» по аналогии с музыкальной октавой. Но его системе следовали только первые 17 элементов.
Периодическая система была создана Д. И. Менделеевым в 1869 году. Почти одновременно с этим, в 1870 году, Лотар Мейер продемонстрировал периодичность химических свойств элементов в зависимости от их атомной массы.
А как нам почувствовать этот ритм – ритм физической формы?
Современная наука представляет себе строение атома так: в центре атома находится положительно заряженное ядро, вокруг которого на электронных оболочках располагаются электроны. Заряд ядра уравновешивается общим числом электронов. Сами же электронные оболочки имеют свою тонкую структуру, так называемые уровни, на которых и поселяются электроны. Есть определенные физические законы заселения уровней электронами. Но самое важное для нас сейчас то, что физико-химические свойства элементов определяются прежде всего заселенностью оболочки с самым высоким уровнем энергии, так называемой конфигурацией. Как правило, это самая внешняя оболочка, а строение начинается и завершается в каждом горизонтальном ряду – периоде. Итак, у элементов одного периода разная конфигурация, но одно и то же количество электронных оболочек и одинаковое строение завершенных, внутренних оболочек (остова).
По мере развития Вселенной происходит эволюция химических элементов: от легкого водорода – к более тяжелым. Постепенно, шаг за шагом увеличивается заряд ядра, соответственно увеличивается и население электронных оболочек. Причем электроны могут появляться лишь на незавершенной оболочке. Так же постепенно (по мере роста заряда ядра) изменяются и свойства элементов.
Стремление к совершенству, которое выражается в завершенности всех электронных оболочек, настолько сильно, что именно оно определяет многие химические свойства элементов. Самые первые элементы каждого периода имеют по одному электрону на достраиваемой оболочке. До ее завершения им еще далеко. Этим элементам проще «отдать» свой единственный электрон в химических взаимодействиях, что они и делают, бурно реагируя даже с водой. По мере завершения оболочки элементы уже не так легко расстаются с электронами, а предпоследним элементам каждого периода уже проще «отобрать» недостающий электрон, нежели отдать свой. Стремясь к совершенству, они также бурно вступают в реакции. У последних элементов каждого периода все оболочки завершены, все уровни «заселены». Они уже «совершенны» и практически не вступают в реакции.
Но природа в своем творчестве не терпит остановок, химическая эволюция продолжается, и электроны следующих элементов вынуждены заселять новые оболочки. При этом они с готовностью оставляют «свое» ядро, вступая в реакции, результатом которых является совершенство завершенных оболочек, но уже в химических соединениях. До сих пор остается загадкой, будет ли когда-либо завершена вся Периодическая таблица и какой максимальной массой может обладать ядро.
Элементы со сходной конфигурацией, но разным остовом образуют вертикальные столбцы Периодической системы – группы. Химические свойства элементов одной группы различаются только скоростью вступления в химические реакции: чем тяжелее ядро, тем менее ярко выражены свойства группы. Очень тяжелые элементы, находящиеся внизу таблицы, неустойчивы – радиоактивны.
Первые три периода в таблице короткие. А начиная с четвертого в ней появляются «лишние» элементы. Все они обладают очень похожими физическими свойствами, и в быту мы их часто называем металлами. Чем же они отличаются? Оказывается, самой «энергетичной» у них является не внешняя подоболочка, а предпоследняя, поэтому с ростом заряда ядра сначала завершается ее строение, а уже потом – строение самой внешней.
Ритмичность изменения свойств элементов, отраженная в периодической системе, настолько ярка, что по ней можно проследить их основные физико-химические свойства. Электропроводность, тип наиболее характерной химической связи для соединений элементов, тип образуемой кристаллической решетки – все эти и другие свойства элемента могут быть определены по его местонахождению в Периодической системе. Сразу после открытия периодического закона в таблице было несколько белых пятен, которые довольно быстро заполнились благодаря тому, что стало ясно, какими свойствами должны обладать еще не открытые элементы.
Стремясь охватить все проявления периодичности, многие исследователи создавали свои формы Периодической системы. Наиболее известными сейчас являются короткая (в ней группы и подгруппы расположены в одном столбце, но выделены разным цветом), длинная (подгруппы расположены в горизонтальных рядах между группами), и лестничная, придуманная Нильсом Бором.