Еще один парадокс, расшатавший основы классической физики, – невозможность объяснить структуру атома. В 1896 г. было открыто явление радиоактивности, через год открыт электрон, а в 1911 г. благодаря опытам Резерфорда обнаружено, что атом состоит из необычайно малого ядра и вращающихся вокруг него электронов. Чтобы представить себе соотношение размеров ядра (10-13 см) и атома (10-8 см), увеличим атом до размеров комнаты – тогда ядро будет едва заметной точкой.
В результате классические представления о твердом теле как об области пространства, заполненной сплошной материей, были заменены на представления о «пустоте», в которой движутся чрезвычайно малые частицы – ядра атомов и электроны. Предполагалось, однако, что эти частицы обладают чрезвычайно высокой плотностью. Новое содержание получило учение Демокрита, утверждавшего, что в мире нет ничего, кроме атомов и пустоты.
По классическим представлениям, чтобы электрон не упал на ядро, он должен с сумасшедшей скоростью вращаться вокруг него. Но, вращаясь, электрон испытывает ускорение (направленное к центру орбиты) – а ускоряющиеся частицы, согласно законам классической электродинамики, непрерывно излучают электромагнитную волну, а значит, теряют энергию. Электроны должны практически мгновенно (за 10-11 секунды) упасть на ядро! Для объяснения устойчивости атомов было предложена еще одна «квантовая» идея: излучение электрона в атоме может происходить только дискретными порциями. Развитие этой идеи позволило описать частоты линий спектра электромагнитных излучений веществ.
Корпускулярные свойства света проявились и в эффекте А. Комптона (1922 г.): оказалось, что свет может рассеиваться электронами, при этом и электрон, и свет ведут себя подобно абсолютно упругим шарикам. Итак, «сумасшедшая природа» придает свету свойства то волны, то частицы – в зависимости от условий его регистрации.
В 1924 г. Луи де Бройль предположил, что такие свойства характерны не только для света, но и вообще для всех объектов микромира. Если эта гипотеза верна, то движение частиц атома нельзя описывать в классических понятиях траектории (орбиты).
Поток электронов, проходящих через щель, регистрируется на экране. Частота попадания электронов в точку
Эта идея прекрасно согласуется с опытом, в котором электроны, которые всегда считались «частицами», один за другим «выстреливались» в сторону диафрагмы в виде щели, за которой располагался экран. На экране фиксировались точки, в которые попадали электроны, прошедшие через щель. Если бы электроны были частицами, на экране была бы четкая область, в которую попадали бы частицы, движущиеся по прямой через щель. В реальности же электрон попадает в любую точку экрана, причем в одни области чаще, а в другие реже. Частота попаданий электронов в разные площадки экрана на рисунке показана кривой зеленого цвета. Форма этой кривой полностью совпадает с формой интенсивности волны (световой или волны на поверхности воды), проходящей через щель. Это заставляет отказаться от понятия частицы, движущейся по траектории: вместо нее в современной физике используется представление о некоторой «волне вероятности», которая и распространяется как будто «вместо» частицы, огибает щели экрана, а затем порождает фотон в том или ином месте в соответствии с математическими законами.
Но волна не имеет конкретной координаты, она размыта в некоторой области пространства. На смену представлениям о точечных частицах материи (локальность) приходит «нелокальность». Удивительно, что при регистрации координаты электрона на втором экране «нелокальность» электрона мгновенно сменяется четкой локальностью – электрон-волна мгновенно сворачивается в точку, фиксирующую след от электрона на втором экране. Это свойство получило название редукции волны при измерении.
Однако такая интерпретация редукции волны грозила нарушить свойство причинности. Мы привыкли, что каждое событие имеет свою причину: например, разбитая ваза на полу возникла потому, что ее откуда-то бросили или столкнули, причем сначала ее столкнули, а потом она разбилась. От момента действия причины (толчок вазы) до следствия (ее разбития) обязательно должно пройти какое-то время, затрачиваемое на преодоление пространства, разделяющего причину и следствие. Однако в квантовом мире все не так просто – в рассмотренном примере следствие наступает одновременно с причиной, как бы далеко одна от другой они ни находились. Действительно, в момент измерения все «части» электрона-волны, размытого в пространстве, мгновенно собираются в точку на экране в момент измерения его координаты.